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Abstract. We present an overview of the topics in the title and of some of the
key results pertaining to them. These have historically been topics of interest

in computability theory and continue to be a rich source of problems and ideas.

In particular, we draw attention to the links and connections between these
topics and explore their significance to modern research in the field.
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1. Introduction and Notation

1.1. An overview of this paper. The topics we cover—Π0
1 classes, computable

domination, degrees of models of arithmetic, and randomness—largely grew up over
the last fifty years. Lately, they have received considerable attention, as have the
many links between them and other topics. We present a different point of view of
these timely areas.

The study of Π0
1 classes (effectively closed classes in Cantor space or Baire space)

emerged in the early 1970’s with work by Jockusch and Soare, although Kreisel
and Shoenfield had obtained some previous results on degrees of models. The use
of Π0

1 classes rapidly spread to many other areas, including model theory, com-
putable combinatorics and Ramsey’s theorem, complexity theory and randomness,
and models of Peano arithmetic. In Section 3, we consider two of the original theo-
rems in this study (the Low Basis Theorem and the Computably Dominated Basis
Theorem), each showing that a nonempty Π0

1 class has a member of a certain type.
The subsequent popularity of this area has lead to many related results. In Section
3, we take a look at some of these, including an antibasis theorem, a proper lown
basis theorem, as well as cone avoidance constructions.

A prominent method of constructing members of Π0
1 classes is known as forcing

with Π0
1 classes. The name comes from the fact that in such constructions we

begin with a certain tree and pass to a smaller subtree in order to force a given
requirement. This technique is very flexible and can be used to obtain a number
of finer results about the members of nonempty Π0

1 classes, including ones which
avoid cones or form minimal pairs with given noncomputable sets. In Section 4, we
discuss this notion of forcing in a general setting, defining the appropriate notions
of condition, extension, density, and genericity. We also discuss individual forcing
modules, and how they can be combined to achieve desired conclusions.

A function f is computably dominated (hyperimmune-free) if every function
g ≡T f (not only f itself) is bounded by a computable function. The Computably
Dominated Basis Theorem in Section 3 connects Π0

1 classes to computable dom-
ination because it shows that every nonempty Π0

1 class contains a computably
dominated (c.d.) member. In Section 5 we explore other properties of computably
dominated functions and the degrees they can inhabit. In particular, we look at the
following questions: Can degrees comparable with ∅′ be c.d.? Can a Σ0

2 set be c.d.?
Although sparsely distributed and difficult to construct, the c.d. functions have two
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surprising downward closure properties. The c.d. functions also play an important
role in algorithmic randomness and complexity, and are treated in recent books in
these areas by Nies [1999] and Downey and Hirschfeldt [2010]. Cooper [2004] also
covers computable domination and hyperimmune degrees.

One of the original motivations for looking at Π0
1 classes was the study of degrees

of complete extensions of Peano Arithmetic (PA), or equivalently, degrees of models
of PA (PA degrees). Indeed, the complete extensions of PA form a Π0

1 class, and
if f is any complete extension of PA and C is any nonempty Π0

1 class, then f can
compute a member g ∈ C. In Section 6, we consider a number of alternative ways
of defining the PA degrees, including as those degrees which contain a {0, 1}-valued
diagonally noncomputable (d.n.c.) function.

Over the last decade a rapidly growing area has been Kolmogorov complexity and
algorithmic randomness. There has been a close connection between Π0

1 classes and
1-random (Martin-Löf random) reals. For example, there is a nonempty Π0

1 class
all of whose elements are 1-random, as we shall see in Corollary 7.3. In Section
7, we relate randomness to the computably dominated degrees that we study in
Section 5, and we examine the relationship between the measure of a Π0

1 class and
the 1-random reals it contains.

1.2. Notation. Using ordinal notation, identify the ordinal 2 with the set of smaller
ordinals {0, 1}. We let 2<ω denote the the set of all finite sequences of 0’s and 1’s.
Identify a set A ⊆ ω with its characteristic function f : ω → {0, 1} and represent
the class of these functions as 2ω. Let ωω denote the set of all functions f from ω
to ω. We use these definitions and operations on strings.
σ, τ, ρ strings in 2<ω

λ empty string

σ̂τ concatenation of σ ∈ 2<ω by τ ∈ 2<ω

σ ≺ τ , σ ≺ A σ is an initial segment of τ , A

|σ| length of σ

A�z, σ �x restriction of A or σ to x < z

A�� z, σ �� x restriction of A or σ to x ≤ z
We state most definitions for 2ω but with obvious changes they extend to ωω.

We now deal with classes C ⊆ 2ω, i.e., second order objects, rather than just sets
A ⊆ ω or functions f ∈ 2ω which are first order objects. It is customary to call an
element A ⊆ ω or f ∈ 2ω a real.

2. Open and Closed Classes in Cantor Space

2.1. Open Classes.

Definition 2.1.

(i) Cantor space is 2ω with the following topology. For every σ ∈ 2<ω define
the basic open class

Jσ K = { f : f ∈ 2ω & σ ≺ f }.
The open classes of Cantor space are unions of basic open classes. A set
A ⊆ 2<ω is an open representation of the open class

JA K =
⋃
σ∈A

Jσ K.
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(We may assume A is closed upwards, i.e., σ ∈ A and σ ≺ τ implies
τ ∈ A.)

(ii) A class A ⊆ 2ω is effectively open (computably open) if A = JA K for a
computable set A ⊆ ω.1

(iii) A class A ⊆ 2ω is (lightface) Σ0
1 if there is a computable R such that

(1) A = { f : (∃x)R( f �x ) }
(iv) A class A is (boldface) Σ0

1 if (1) holds with R replaced by RX for RX

computable in some set X ⊆ ω, in which case we also say A is Σ0,X
1 .

Theorem 2.2 (Effectively Open Classes). Fix a class A ⊆ 2ω.

(i) A is effectively open iff A is (lightface) Σ0
1.

(ii) A is open iff A is (boldface) Σ0
1.

Proof. (i) Let A be effectively open. Then A = JB K for some B computable.
Define R(σ) iff σ ∈ B. Now f ∈ A iff (∃x)R(f � x). Hence, A is Σ0

1. Conversely,
assume A is Σ0

1 via a computable R satisfying (1). Define A = {σ : R(σ)}. Then
A = JA K.

(ii) Relativize the proof of (1) to a set X ⊆ ω. �

2.2. Closed Classes.

Definition 2.3. (i) A tree T ⊆ 2<ω is a set closed under initial segments, i.e.,
σ ∈ T and τ ≺ σ imply τ ∈ T . The set of infinite paths through T is

(2) [T ] = { f : (∀n) [ f �n ∈ T ] }.

(ii) A class C ⊆ 2ω is (lightface) Π0
1 if there is a computable relation R(x) such

that

(3) C = { f : (∀x)R(f �x) }.
A class C ⊆ 2ω is boldface Π0

1 if (3) holds for RX computable in some X ⊆ ω. The

latter is also written as C is Π0,X
1 .

(iii) A class C ⊆ 2ω is effectively closed (computably closed) if its complement is
effectively open. A class C ⊆ 2ω is closed if its complement is open.

Theorem 2.4 (Effectively Closed Classes). For any class C ⊆ 2ω, the following
are equivalent:

(i) C = [T ] for some computable tree T .
(ii) C is effectively closed.

(iii) C is a (lightface) Π0
1 class.

Proof. This follows from Definition 2.3 and Theorem 2.2. �

Corollary 2.5 (Closed Classes and Trees). For any class C ⊆ 2ω, the following
are equivalent:

(i) C = [T ] for some tree T .
(ii) C is closed.

(iii) C is a (boldface) Π0
1 class.

1It is easy to show that if A = JA K with A c.e. , then A = JB K for some computable set B ⊆ ω.
The notation Jσ K for a basic open set is now becoming standard and has also been adopted in

the book by Downey and Hirschfeldt [2010].
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Proof. Relativize the proof of Theorem 2.4 to X ⊆ ω. �

Remark 2.6 (Representing Closed Classes). The most convenient way of repre-
senting open and closed classes is with trees. If C is closed we choose a tree T such
that C = [T ]. Define A = ω − T . Then T is downward closed, A is upward closed,
and A defines the open set JA K = 2ω − [T ] = C. Note that the representations
A and T are conveniently complementary in ω and the open class JA K and closed
class [T ] are also complementary in 2ω. The only difference between the effective
case and general case is whether the tree T is computable or only computable in
some set X ⊆ ω.

We may imagine a path f ∈ 2ω trying to climb the tree T without passing though
a node σ ∈ A. If f succeeds, then f ∈ C = [T ]. However, if f � σ for even one
node σ ∈ A, then f falls off the tree forever and f 6∈ C.

2.3. The Compactness Theorem. One particularly useful feature of Cantor
space is the well-known Compactness Theorem (whose proof we omit), and the
Effective Compactness Theorem 2.9, both of which lead into the study of our main
topic, Π0

1 classes.

Theorem 2.7 (Compactness Theorem). The following easy and well-known prop-
erties hold for Cantor Space 2ω. The term “compactness” refers to any of them,
but particularly to (iv).

(i) (Weak König’s Lemma). If T ⊆ 2<ω is an infinite tree, then [T ] 6= ∅.
(ii) If T0 ⊇ T1 . . . is a decreasing sequence of trees with [Tn ] 6= ∅ for every

n, and intersection Tω = ∩n∈ω Tn, then [Tω ] 6= ∅.
(iii) If {Ci}i∈ω is a countable family of closed sets such that ∩i∈F Ci 6= ∅ for

every finite set F ⊆ ω, then ∩i∈ω Ci 6= ∅ also.
(iv) (Finite Subcover Property). Any open cover JA K = 2ω has a finite

open subcover F ⊆ A such that JF K = 2ω.

Proof. See Soare [CTA] Chapter 3. �

2.4. Notation For Trees. Since our principal tool with be trees we introduce
some notation.

Definition 2.8. Fix a tree [T ] ⊆ 2<ω.

(i) For σ ∈ T define the subtree Tσ of nodes comparable with σ,

(4) Tσ = { τ ∈ T : σ � τ or τ ≺ σ }.
(ii) Define the subtree of extendible nodes σ ∈ T .

(5) T ext = { σ ∈ T : (∃f � σ)[ f ∈ [T ] ] }
(iii) A point (path) f ∈ [T ] is isolated if

(6) (∃σ)[ [Tσ ] = { f } ].

We say that σ isolates f because Jσ K ∩ [T ] = { f } and we call σ an
atom because it cannot be extended to two incomparable nodes ρ and τ
on T . If f is isolated we say it has Cantor-Bendixson rank 0. If f is not
isolated, then f is a limit point. Note that

(7) T ext = {σ ∈ T : ( ∀n ≥ |σ| ) (∃τ � σ ) [ |τ | = n & τ ∈ T ].
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2.5. Effective Compactness Theorem. For a computable tree T ⊆ 2<ω we can
establish the following effective analogues of the Compactness Theorem 2.7.

Theorem 2.9 (Effective Compactness Theorem). Let T ⊆ 2<ω be a computable
tree.

(i) T ext is a Π0
1 set. Hence, T ext is Σ0

1, T ext ≤m ∅′, and T ext ≤T ∅′.
(ii) (Kreisel Basis Theorem) If [T ] 6= ∅, then (∃f ≤T ∅′) [ f ∈ [T ] ]. This

part (ii) will be generalized in the Low Basis Theorem 3.8.
(iii) If [T ] 6= ∅, and f is the lexicographically least member, then f has c.e.

degree.
(iv) If f ∈ [T ] is isolated, then f is computable.
(v) Given an open cover JA K = 2ω with A c.e. there is finite subset F ⊆ A

such that JF K = 2ω and a canonical index for F can be found uniformly
in a c.e. index for A.

Proof. (i) The formal definition of T ext in (5) has one function quantifier and is in
Σ1

1 form. Indeed, this the best we can do for Baire space ωω. However, for Cantor
space 2ω we can use the Compactness Theorem 2.7 (i) to reduce T ext to the Π0

1

form of (7). Note that the quantifier τ is bounded by n and therefore only the (∀n)
quantifier counts in the prefix calculation.2

(ii) Now use a ∅′ oracle to choose f ∈ [T ] such that f = ∪nσn defined as follows.
Given σn ∈ T ext let σn+1 = σn̂0 if σn̂0 ∈ T ext and σn̂1 otherwise.

(iii) (This gives a stronger conclusion than (ii).) Let f be the the lexicographically
least member of [T ], i.e., in the dictionary ordering <L on the alphabet { 0,1 }.
Define the following c.e. set of nodes M ⊆ T ext such that M ≡T f .

M = { σ : (∀τ) |τ |= |σ| [ [ τ ∈ T & τ ≤L σ ] =⇒ τ ∈ T ext ] }

(Wait until σ and all its predecessors of length |σ| have appeared nonextendible.
Then put σ into M . In this way we enumerate all nodes τ <L f .)

(iv) Choose σ ∈ T with [Tσ ] = { f }. To compute f assume we have computed

τ = f �n. Exactly one of τ̂0 and τ̂1 is extendible. Enumerate T ext until one of
these nodes appears and take the other one.

(v) Assume JA K = 2ω with A c.e. Enumerate A until a finite set F ⊆ A is found
with JF K = 2ω by the Compactness Theorem (iv). We can search until we find
it. �

Remark 2.10. Note that the conclusions in the Effective Compactness Theo-
rem 2.9 have various levels of effectiveness even though the hypotheses are all effec-
tive. In (v) if JA K covers 2ω then the passage from A to F is computable because
we simply enumerate A until F appears (as for any Σ1 process). However, if JA K
fails to cover 2ω then the complementary closed class [T ] = 2ω− JA K is nonempty.
Then (ii) gives a path f ∈ [T ] with f ≤T ∅′ and (iii) even produces a path of
c.e. degree, but neither produces a computable path f because given an extendible
string σ the process for the proof of Weak König’s Lemma in Theorem 2.7 (i) does
not computably determine whether to extend to σ̂0 or σ̂1. In Theorem 3.4 we
shall construct a computable tree with paths but no computable paths.

2See Soare [CTA] Theorem 4.1.3 (vi) on quantifier manipulation.
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3. Basis and Nonbasis Theorems for Π0
1 Classes

The motivating question of this section is the following: given a nonempty Π0
1

class C, what can we say about the Turing degrees of members of C? To address
this question, we need to fix some terminology.

Definition 3.1. A Π0
1 class C is special if it contains no computable member.

It follows that if T ⊆ 2<ω is a computable tree such that [T ] is special then T ext

must be a perfect tree, meaning that every σ ∈ T ext admits incompatible extensions
in T ext because any isolated path would be computable. Therefore, every special
Π0

1 class has 2ℵ0 members.

Definition 3.2. Let D be a class of Turing degrees.

(i) We call D a basis for Π0
1 classes if every nonempty Π0

1 class has a member
f with deg(f) ≤ d for some d ∈ D. Otherwise, we call D a nonbasis.

(ii) We call D an antibasis3 for Π0
1 classes if whenever a Π0

1 class contains
a member of every degree d ∈ D, it contains a member of every degree
d ≥ 0.

We extend the above definitions from classes of degrees to classes S of subsets of
ω, by calling S a basis, nonbasis, or antibasis if {deg(S) : S ∈ S} is, respectively, a
basis, nonbasis, or antibasis.

An alternative definition of bases is the following. First, for a Π0
1 class C, define

its degree spectrum as S(C) = {deg(f) : f ∈ C}. Then a class of degrees D is a
basis for Π0

1 classes if D ∩ S(C) 6= ∅ for all Π0
1 classes C 6= ∅. (We will not refer to

degree spectra in the sequel; see Kent and Lewis [2009] for a thorough investigation
of their algebraic properties.)

3.1. Nonbasis Theorems For Π0
1. Next in Theorem 3.4 we show that we cannot

always find a computable member in a nonempty Π0
1 class. Therefore, the class of

computable sets is a nonbasis for Π0
1.

Definition 3.3. If A and B are disjoint sets, then S is a separating set if A ⊆ S
and B ∩ S = ∅. The class of all such sets S is written S(A,B).

Theorem 3.4.

(i) If We and Wi are disjoint c.e. sets, then the class of separating sets
S(We,Wi) is a nonempty Π0

1 class.
(ii) There is a nonempty Π0

1 class with no computable members.

Proof. (i) Define a Π0
1 class C by putting f in C if:

(∀x)(∀s)[ [ x ∈We =⇒ f(x) = 1 ] & [ x ∈Wi =⇒ f(x) = 0 ] ].

(ii) Let We and Wi be disjoint, computably inseparable c.e. sets. �

Corollary 3.5. The class of computable sets is not a basis for Π0
1 classes (i.e., {0}

is a nonbasis).

We can generalize the preceding corollary as follows.

3Some authors (e.g., Cenzer [1999]) use the term antibasis as a synonym for nonbasis. Our use
here follows that of Kent and Lewis [2009].
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Theorem 3.6 (Jockusch and Soare, 1972a, Theorem 4). The class of incomplete
c.e. sets is not a basis for Π0

1 classes (i.e., the class of c.e. degrees d < 0′ is a
nonbasis).

Proof. Let A be the standard effectively immune set of Post. Recall that this set is
constructed by enumerating into A at stage s ≥ 0, for each e < s, the least x > 2e
such that x ∈ We,s ⊆ As. Then A is co-c.e. and it is easy to see that for every

e ∈ ω, |A�2e| ≤ e, meaning A ∩ [2e+1 − 2, 2e+2 − 3] 6= ∅. Thus, if we define

C = {f ∈ 2ω : f ⊆ A & (∀e)[f ∩ [2e+1 − 2, 2e+2 − 3] 6= ∅]},
then C is a Π0

1 class consisting entirely of infinite subsets of A. In particular, since
A is effectively immune and so is every infinite subset of an effectively immune
set, every member of A is effectively immune. It is a well-known result of Martin
that no incomplete c.e. set can compute an effectively immune set (see Soare, 1987,
Chapter 5), so no incomplete c.e. set can compute any element of C. �

3.2. The Kreisel-Shoenfield Basis Theorem. By the Kreisel Basis Theorem 2.9 (ii)
we can, in any nonempty Π0

1 class, always find a member f ≤T ∅′ and by (iii) even
f of c.e. degree, although by Theorem 3.6 not necessarily incomplete c.e. degree.
Can we do better?

Theorem 3.7 (Kreisel-Shoenfield Basis Theorem). Every nonempty Π0
1 class C

has a member f <T ∅′.

Shoenfield [1960] improved the Kreisel Basis Theorem to f strictly below ∅′,
namely f <T ∅′, by considering, for a given Π0

1 class C, the Π0
1 class D of all 〈f, g〉

such that f ∈ C and

(∀e)[ Φfe (e)↓ =⇒ Φfe (e) 6= g(e) ].

He then applied Kreisel’s result to D. The following Low Basis Theorem substan-
tially generalizes these results by Kreisel and Shoenfield.

3.3. The Low Basis Theorem. The previous two subsections prove that given
a Π0

1 class C we cannot always find a computable member f ∈ C but we can find
a member f <T ∅′. The next theorem says we can do much better and always
produce f which is low , i.e., f ′ ≡T ∅′, and therefore close to ∅ in information
content and structure. Downey and Hirschfeldt’s new book [ta, p. 73] states, “The
following is the most famous and widely applicable basis theorem.”

Theorem 3.8 (Low Basis Theorem (LBT), Jockusch and Soare, 1972b). If C ⊆ 2ω

is a nonempty Π0
1 class, then it contains a low member f .

Proof. Let T be a computable tree such that [T ] = C. Use ∅′ to define a sequence
of infinite computable trees T = T0 ⊇ T1 ⊇ . . . as follows. Define

(8) Ue = { σ : Φσe, |σ| (e)↑ }

which is also a computable tree. Given Te: (1) define Te+1 = Te ∩ Ue if Te ∩ Ue is
infinite; and (2) define Te+1 = Te otherwise. If (1) then Φge(e)↑ for all g ∈ [Te+1],
and if (2) then Φge(e) ↓ for all g ∈ [Te+1]. Note that ∅′ can decide whether a
computable tree is finite by (7).

We say that Te+1 forces the jump as described in Section 4 because no matter
which clause holds in the definition of Te+1 we know that either,

(9) ( ∀ g ∈ [Te+1 ] ) [ Φge(e)↓ ] or
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(10) (∀ g ∈ [Te+1 ] ) [ Φge(e)↑ ]

Choose f ∈
⋂
e∈ω [Te ]. This is an intersection of a descending sequence of

nonempty closed sets and hence nonempty, by the Compactness Theorem 2.7 (ii).
Now ∅′ can decide using (7) which of (9) or (10) holds at stage e+1 in the definition
of Te+1.

Therefore, we have ∅′-computably determined at stage e+ 1 the convergence or
divergence of Φfe (e) even though very little of f has yet been defined by stage e+1.
This is the nature of forcing, to decide Φfe (e) even though f is yet undetermined. �

In Section 5.3 we use this method to prove a similar basis theorem that any
nonempty Π0

1 class contains a member f such that every g ≤T f is dominated by a
computable function.

We shall see in Section 6, Theorem 6.4, that there exists a nonempty Π0
1 class

P such that for every other nonempty Π0
1 class C and every f ∈ P, f computes

a member of C (i.e., for every f ∈ P, the singleton {f} is a basis for Π0
1 classes).

Applying the Low Basis Theorem to P then yields the following:

Theorem 3.9 (Second Low Basis Theorem, Jockusch and Soare, 1972b). There
is a low set A such that every nonempty Π0

1 class C ⊆ 2ω has a member f ≤T A.

3.4. Superlow Basis Theorem. The proof of the Low Basis Theorem 3.8 gives
even more information about the jump f ′ than was explicitly claimed.

3.4.1. Defining Superlow.

Definition 3.10. Assume we are given a set A ≤T ∅′.
(i) The set A is ω-c.e. if there is a computable sequence {As}s∈ω with

A0 = ∅ and As(x) ∈ {0, 1}, and a computable function g(x) such that

(11) A = limsAs & | { s : As(x) 6= As+1(x) } | ≤ g(x).

(ii) If (11) holds for g(x) then A is g(x)-c.e. If g(x) = n then A is n-c.e.
(iii) A is truth-table reducible to B, written A ≤tt B, if there is a total Turing

reduction Φe with A = ΦBe .
(iv) A set A is superlow if A′ ≤tt ∅′ or equivalently if A′ is ω-c.e.

Theorem 3.11 (Superlow Basis Theorem (SLBT)). Every nonempty Π0
1 class C ⊆

2ω has a member A which is superlow and indeed A′ is 2e+1-c.e.

3.4.2. The First Proof of the Superlow Basis Theorem. We now give what was
historically the first proof of the SLBT from c. 1969, by making A′ ω-c.e.

Proof. The first proof4 (unpublished) of the Low Basis Theorem 3.8 (LBT) was not
the ∅′ oracle proof above but a limit computable proof showing that A′ is 2e+1-c.e.
We construct a computable a sequence of strings {σs}s∈ω such that A := lims σs is
superlow. Fix a computable tree T with [T ] = C. Define the computable tree,

(12) Ue,s = { σ : Φσe, s (e)↑ }

4Jockusch and Soare never stated the Superlow Basis Theorem because the notion of superlow

did not exist in 1972. Several people later noticed that the original proof of the Low Basis Theorem

can easily be converted to a proof of the Superlow Basis Theorem. The limit computable proof
presented here does more since it gives the conclusion at once. The two proofs of the LBT and

SLBT illustrate the tradeoff between the two approaches to proofs concerning Π0
1 classes, an oracle

proof, versus a computable approximation.



10 DAVID E. DIAMONDSTONE, DAMIR D. DZHAFAROV, AND ROBERT I. SOARE

Let T0, s = T for all s. For every s given Te,s: (1) define Te+1, s = Te, s ∩ Ue,s if the
latter contains a string σ of length s and (2) define Te+1, s = Te, s otherwise. Let
σs be the lexicographically least string of length s in Ts, s. Choose a stage s after
which the trees Ti,s have stopped changing from (1) to (2) for all i < e. After s the
tree Te,t changes from (1) to (2) at most once at some t > s when Φσe,t(e) ↑ and
Φσe,t(e) ↓ . For stages v > t the tree Te,v never changes away from (2) and Φσe,v(e)
remains defined forever. Therefore, Φσe,s(e) changes between defined and undefined

at most 2e+1 times and converges to A′(e). �

3.4.3. A Second Proof of the Superlow Basis. For completeness, we include also the
following alternative proof of the SLBT which is more straightforward in that it
directly builds a total reduction.

Proof. Let I = {i ∈ ω : i is an index for a finite Π0
1 class}. Then I is definable by

a Σ0
1 formula, meaning, since ∅′ is Σ0

1-complete, that there is a computable function
h such that for all i, i ∈ I if and only if h(i) ∈ ∅′. Fix a nonempty Π0

1 class C
and a computable tree T0 ⊆ 2<ω with C = [T0 ]. We define a total reduction Ψ as
follows. Fix X and e ∈ ω, and assume inductively that for all x < e, ΨX(x) has
been defined, along with (indices for) trees T0 ⊇ · · · ⊇ Te. From an index for Te we
can effectively find an index i for the tree Ue = {σ ∈ Te : Φσe (e) ↑}, and we define
ΦX(e) to be 0 or 1 depending as h(i) is or is not in X. We then let Te+1 be either
Te or Ue, respectively. By comparison with the proof of the Low Basis Theorem,
we see that Ψ∅

′
= f ′ for some f ∈ C. �

3.5. The Computably Dominated Basis Theorem. Jockusch and Soare showed
that a variation on the proof of the Low Basis Theorem 3.8 yielded a member f ∈ C
such that every g ≤T f is bounded by a computable function. Such functions are
called computably dominated and play an important role.

Definition 3.12.

(i) A function h bounds (majorizes) a function g, written g < h, if (∀x)[ g(x) <
h(x) ].

(ii) Function h dominates g, written g <∗ h, if (∀∞x)[ g(x) < h(x) ]. where
(∀∞x) denotes “for almost all x,” i.e., for all but finitely many x.

(iii) If A = {a0 < a1 < . . .} is an infinite set, the principal function of A is
pA where pA(n) = an. Extend the definitions of bounds and dominates
to an infinite set A by using the principal function pA.

(iv) A function g (or set A) is computably bounded if it is bounded by some
computable function h.

(v) A (Turing) degree d is computably dominated (c.d.) if f is computably
bounded for every f ∈ d.

(vi) A function f or set A is computably dominated (c.d.) if the degree of f
(respectively A) is a computably dominated degree.

The key point is that for a function f or set A to be computably bounded sim-
ply requires a single bounding function, while being computably dominated imposes
computable bounding on every function g in the same degree, a very strong condi-
tion. For example we shall prove in Theorem 5.8 that if f is computably dominated
then g is computably bounded for all g ≤T f not only g ≡T f . In Section 5.3 we
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shall see that a computably dominated set is also hyperimmune-free (see Definition
5.7).5

The key idea in the next theorem is to use a ∅′′ oracle to build a member f
of a given Π0

1 class with the property that we can decide whether Φfe is total or
not at a definite stage of the construction. This differs from the proof of the Low
Basis Theorem, where we needed only a ∅′ oracle to similarly decide whether Φfe (e)
converges or not. In both cases, however, we use the same technique (known as
forcing with Π0

1 classes) of continually pruning an infinite computable tree while
preserving certain desired properties. We shall give a more systematic treatment
of this technique in Section 4 below.

Theorem 3.13 (Computably Dominated Basis Theorem, Jockusch and Soare,
1972b). If C ⊆ 2ω is a nonempty Π0

1 class, then it contains a low 2 member such
that

(13) (∀g ≤T f) [ g is computably bounded ].

Proof. For any computable tree T and any e, x ∈ ω, we can ∅′-uniformly effectively
decide whether the following set is infinite:

(14) Ue,x = { σ ∈ 2<ω : σ ∈ T & Φσe, |σ| (x)↑ }.

Choose a computable tree T0 such that C = [T0 ], and assume by induction that Te
is defined for some e ≥ 0. Use a ∅′′ oracle to determine whether there is an x such
that Ue,x is infinite.

Case 1. If so, then choose the least such x, and define Te+1 = Ue,x.

Case 2. If not, then define Te+1 = Te.

Note that in either case, Te+1 ⊆ Te. As before, the intersection
⋂
e Te is nonempty

by the Compactness Theorem 2.7 (ii), so we can choose some f in it.

Lemma 3.14. If g = Φfe is total then g is computably bounded.

Proof. Assume g = Φfe is total. Then Te+1 must have been defined by Case 2
since otherwise Φfe could not be total. Then for every x, we can effectively find
a level n such that Φσe (x) ↓ for all σ ∈ Te+1 of length n. Then the function
h(x) = max{ Φσe (x) : σ ∈ Te+1 & |σ| = n } bounds g. �

Lemma 3.15. f is low 2.

Proof. Fix e. If Case 1 holds for Te+1 then Φfe is not total. If Case 2 holds for Te+1

then Φfe is total. In either case, we are forcing at the finite stage e + 1 to decide

whether or not e ∈ Totf = { i : Φfi total }. The construction is ∅′′-computable.

Hence, Totf ≤T ∅′′ so f ′′ ≤T ∅′′. �

�

We cannot always produce a low f in the previous theorem. We shall show in
Theorem 5.13. that no noncomputable f with the computable bounding property
(13) can be computable in ∅′.

5After the term “hyperimmune-free” degree was introduced by Miller and Martin [1968] it was

often used in the literature, even though it conveys little intuition about the meaning. Recently,

Soare introduced the term “computably dominated” which better suggests the meaning, and used
it in his new book Soare [CTA]. He suggested this to Nies who adoped it in his book, Computability

and Randomness [2009]. We use this term here.
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Theorem 3.16. Every nonempty special Π0
1 class has a perfect subclass of com-

putably dominated members.

Proof. Let C be a nonempty special Π0
1 class, and let T ⊆ 2<ω be an infinite tree

with C = [T ]. We define an infinite subtree S of T such that every σ ∈ S is
extendible and has a pair of incomparable extensions in S, and such that every
f ∈ [S] is computably dominated. We obtain S as

⋃
e Se where S0 ⊂ S1 ⊂ · · · are

finite subtrees of T constructed inductively as follows. Let S0 = {λ}, and suppose
Se has been defined for some e ≥ 0 and that the leaves of Se all have the same
length and are extendible. Fix a leaf σ of Se, and define

Uσ,e,x = { τ ∈ T : τ � σ ∨ τ � σ & Φτe, |τ |(x)↑ }.

Note that this is a computable subtree of T , and hence, if it is infinite, it cannot
have any infinite computable path. We define extensions σ0, σ1 of σ as follows.

Case 1. If Uσ,e,x is infinite for some x, fix the least such x, and let σ0 and σ1 be
the first incompatible, extendible extensions of σ in Uσ,e,x.

Case 2. If not, let σ0 and σ1 be the first incompatible, extendible extensions of σ
in T .

Note that in either case σ0 and σ1 must exist, since every extendible node in a
computable tree with no infinite computable path must have two incompatible
extendible extensions in that tree. We let Se+1 be the set of all τ ∈ T such that
either τ � σ0 or τ � σ1 for some leaf σ of Se.

It is readily seen that S is a perfect subtree of T . Suppose g = Φfe for some
f ∈ [S]. Let σ be the leaf of De that is an initial segment of f . Then σ0 and σ1

must have been found according to Case 2 in the definition of De+1, meaning Uσ,e,x
is finite. Thus, given x, find n such that Φτe (x)↓ for all τ � σ in T of length n. Let
h(x) = max{ Φτe (x) : τ ∈ T & τ � σ & |τ | = n }. Then h is computable
function bounding f . We conclude that [S ] is a perfect subclass of C all members
of which are computably dominated. �

Theorem 3.17 (Kučera and Nies). Let P be a nonempty Π0
1 class and B >T ∅′ a

Σ0
2 set. Then there is a computably dominated f ∈ P with f ′ ≤T B.

For a sketch of the proof see Nies [1995, p. 61]. The idea is to fix a c.e. enu-

meration {Bs}s∈ω of B relative to ∅′, to build a ∆0,B
2 enumeration {fs}s∈ω, and to

allow fs(x) 6= fs+1(x) only if Bs �x 6= Bs+1 �x.

3.6. Low Antibasis Theorem. For the purposes of the following theorem, we
will say that a set S ⊆ 2<ω is isomorphic to 2<ω provided there is a bijection
g : 2<ω → S such that for all σ, τ ∈ 2<ω, σ � τ if and only if g(σ) � g(τ).
Notice that if a tree T has a subset isomorphic to 2<ω via a computable such
bijection, then [T ] has a member of every degree. Indeed, for every real X, we have
Y =

⋃
n g(X � n) ∈ [T ]. Clearly, Y ≤T X, while to compute X(n) from Y for a

given n we search for a σ ∈ 2<ω until we find one of length greater than n with
g(σ) ⊂ Y , and then σ(n) = X(n).

Theorem 3.18 (Kent and Lewis, 2009). Every Π0
1 class that has a member of

every nonzero low degree has one of every degree.
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Proof. Fix a nonempty Π0
1 class C not containing a member of every degree and let

T ⊆ 2<ω be a computable tree such that C = [T ]. We define a noncomputable low
set A such that for all e ∈ ω,
(15) ΦAe = g ∈ 2ω =⇒ [ g ≤T ∅ ∨ g 6∈ [T ] ].

In particular, g 6∈ [T ].
We obtain A as

⋃
s σs where σ0 � σ1 � · · · are constructed as follows. Let

σ0 = ∅ and suppose that for some s ≥ 0, σs is given. If s = 3e for some e, ask
whether ϕe(|σs|) converges, and define σs+1 to be σs(1 − ϕe(|σs|)) if it does and
σŝ0 otherwise. If s = 3e+ 1 for some e, ask whether there exists any σ � σs with
Φσe (e)↓ and define σs+1 to be the least such σ if there does and σs otherwise. In
this way, we ensure that A is noncomputable and low.

Finally, suppose s = 3e+ 2 for some e. Search for a σ � σs such that one of the
following cases occurs:

Case 1. For all τ � σ, Φτe (x) diverges or is not {0, 1}-valued for some x < |τ |.
Case 2. Φσe (x)↓ for all x < |σ| and string Φσe (0)̂Φσe (1)̂ · · · ̂Φσe (|σ| − 1) is not in
T .

Case 3. σ has no extensions which e-split.

We claim the search must succeed. If not, we can define computable functions
f : 2<ω → {ρ ∈ 2<ω : ρ � τ} and g : 2<ω → T as follows. By the failure
of Case 1, there exists σ � σs with Φσe (x) ↓∈ {0, 1} for all x < |σ|, and we let
f(∅) = σ for the least such σ. By the failure of Case 2, we know that the string
Φσe (0)̂Φσe (1)̂ · · · ̂Φσe (|σ|−1) belongs to T , and we let g(∅) be this string. We can
thus assume by induction that f(σ) has been defined for some σ, and that

g(σ) = Φf(σ)
e (0)̂Φf(σ)

e (1)̂ · · · ̂Φf(σ)
e (|f(σ)| − 1)

belongs to T . By the failure of Case 3, there exist proper extensions τ0 and τ1
of f(σ) such that Φτ0e (x) ↓ 6= Φτ1e (x) for some x < min{|τ0|, |τ1|}, and using the
failure of Case 1 we can assume that Φτie (x) ↓ for all x < |τi| and all i < 2. For
i < 2, we let f(σ̂i) = τi and g(σ̂i) = Φτie (0)Φτie (1) · · ·Φτie (|τi| − 1). Then g is a
computable bijection from 2<ω to a subset of T isomorphic to 2<ω. Therefore, [T ]
has a member of every degree by our opening remarks. This proves our claim.

Now take the least σ satisfying one of Cases 1–3 above and let σs+1 = σ. Under
Case 1, this ensures that ΦAe is not total or {0, 1}-valued, under Case 2 that ΦAe
is not a member of [T ], and under Case 3 that ΦAe , if total, is computable. This
completes the proof. �

3.7. Proper Lown Basis Theorem. The following generalization of the Low
Basis Theorem says that, up to degree, the restriction of the jump operator to any
special Π0

1 class is surjective. The trick used for pushing the jump of the member
up to the desired set is not unlike that used in the standard proof of the Friedberg
Completeness Criterion.

Theorem 3.19 (Cenzer, 1999). For every set A ≥T ∅′, every special Π0
1 class has

a member f satisfying f ⊕ ∅′ ≡T f ′ ≡T A.

Proof. Fix a nonempty Π0
1 class C and a computable tree T ⊆ 2<ω such that

C = [T ]. We build a sequence of infinite computable trees T = T0 ⊇ T1 ⊇ · · · as
follows. Let Te be given. If e is even, define Te+1 from Te as in the proof of the Low
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Basis Theorem. If e is odd, say e = 2i+ 1, note that T ext
e must be perfect since C

is special, so ∅′ can find the smallest extendible nodes σ, τ ∈ Te such that σ(x) = 0
and τ(x) = 1 for some x. Let Te+1 consist of all the nodes in Te comparable with
σ or τ , depending as A(i) = 0 or A(i) = 1, respectively.

Take f ∈
⋂
e∈ω [Te ]. If e is even, Te+1 can be obtained from Te ∅′-effectively,

and hence both f ⊕ ∅′-effectively and A-effectively because A ≥T ∅′. If e is odd,
say e = 2i + 1, then to obtain Te+1 from Te we need an oracle for ∅′ to find the
extendible nodes σ and τ and the position x on which they disagree, and then an
oracle for A since we need to know A(i). But in this case, i ∈ A iff f(x) = 1,
so an oracle for f suffices to determine whether to let Te+1 consist of the nodes
comparable with σ or the nodes comparable with τ . Since f ′ is decided during
the construction, we consequently have that f ⊕ ∅′ ≤T f ′ ≤T A ≤T f ⊕ ∅′, as
desired. �

The above theorem fails to fully generalize the Friedberg Completeness Criterion
because the latter actually produces, for every A ≥T ∅′, a 1-generic set G with
G⊕∅′ ≡T G′ ≡T A (i.e., a set G such that for every Σ0

1 subset of 2<ω, either some
initial segment of G lies in the set, or no extension of some initial segment of G
does). We cannot reproduce this extra property in the preceding theorem because
there exist special Π0

1 classes with no members of 1-generic degree (e.g., the Π0
1

class all of whose members have degree � 0, since, by a result of Kučera [1987]
and others, no such degree can bound a 1-generic one).

Theorem 3.20. For every n ≥ 0, every special Π0
1 class has a member that is

lown+1 but not lown.

Proof. We proceed by induction. If n = 0, the result follows simply by the Low
Basis Theorem and the fact that we are dealing with special Π0

1 classes. Since the
Low Basis Theorem easily relativizes, we thus assume that the desired result holds,
along with all of its relativizations, for some n ≥ 0. Fix an arbitrary set A and a

nonempty Π0,A
1 class C. Let D be a nonempty Π0,A′

1 class all of whose members have
degree strictly above deg(A)′. By the inductive hypothesis relative to A′, D has an
element B such that B(n) �T (A′)(n) = A(n+1) but B(n+1) ≤T (A′)(n+1) = A(n+2).
Since B >T A

′, it follows by Theorem 3.19, relativized to A, that C has an element
f satisfying f ′ ≡T B. Then f (n+1) ≡T B(n) �T A(n+1) but f (n+2) ≡T B(n+1) ≤T
A(n+2), so f is lown+2 relative to A and not lown+1 relative to A, as desired. This
completes the induction and the proof. �

Of course the condition “special” in the preceding two theorems is unavoidable
since there exist nonempty Π0

1 classes all of whose members are computable.
One interesting topic we do not cover here is the relation between the Cantor-

Bendixson rank of a point f in a Π0
1 class and its Turing degree. For example,

any rank 0 (isolated) point must be computable. Cenzer, Clote, Smith, Soare, and
Wainer [1986] extend this to finite and even computable ordinals. Other results on
rank are discussed in Cenzer [1999].

4. Forcing with Π0
1 classes

The method of constructing the path in the proof of the Low Basis Theorem is
known as forcing with Π0

1 classes, or sometimes also as Jockusch-Soare forcing. It
is highly modular and can be used to obtain a wide array of results, and we will
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encounter it repeatedly in subsequent results about Π0
1 classes. The purpose of this

section is to outline this method, and to give several examples of how it is used.

4.1. Conditions, dense sets, and generics. Forcing in mathematical logic is
a technique which traces its roots back to Paul Cohen’s celebrated proof of the
independence of the Continuum Hypothesis from Zermelo-Fraenkel Set Theory,
and, in slightly different form, even further back to the proof by Kleene and Post
of the existence of incomparable degrees below 0′. The basic idea is to decide, or
“force”, certain properties or requirements of an object we are building at a definite
stage of our building it. Intuitively, we build the object using approximations called
conditions, which we extend one by one in such a way as to preserve any information
we have already decided or committed to. In the case of forcing with Π0

1 classes, this
takes the following form; it should be familiar to the reader who has seen forcing
in other contexts.

Definition 4.1.

(i) A condition is an infinite computable subtree of 2<ω. A condition T̃

extends a condition T if T̃ ⊆ T .
(ii) A collection D of conditions is dense if every infinite computable tree T

has an extension T̃ ∈ D.
(iii) For a degree d, a collection D of conditions is d-effectively dense if every

infinite computable tree T has an extension T̃ ∈ D, and if an index for

T̃ can be found d-effectively from an index for T .
(iv) Given a family of dense sets D = {De : e ∈ ω}, we call a real f ∈ 2ω

D-generic if for all e, f ∈ [T ] for some T ∈ De.

The usefulness of forcing comes from the following theorem which says that generics
always exist. In practice, this means we can obtain a generic possessing some
property or properties simply by adjusting the family D we are working with.

Theorem 4.2 (Existence of generics for forcing with Π0
1 classes).

(i) For any computable tree T and any countable family D = {De : e ∈ ω}
of dense sets, there exists a D-generic real f ∈ [T ].

(ii) If the De are d-effectively dense for some d, then there is a function p

with deg(p) ≤ d such that for each e, p(e) is an index for some T̃ ∈ De

with f ∈ [ T̃ ].

Proof. To prove (i), let T0 = T . By density of the De, we can obtain a chain

T0 ⊇ T1 ⊇ · · ·

of infinite computable trees such that Te+1 ∈ De for all e. Since Cantor space is
compact and [T0 ], [T1 ], . . . is a nested sequence of nonempty closed sets,

⋂
e∈ω[Te ]

must be nonempty. Clearly, any member of this intersection is D-generic. To prove
(ii), note that if the De is d-effectively dense than an index for each Te can be found
d-effectively from an index for Te−1. �

Let us translate the proof of the Low Basis Theorem into the language of families
of dense sets and generic reals. Let {Tt0 , Tt1 , . . .} be an effective enumeration of all
computable subtrees (finite and infinite) of a given tree T and such that ti is an
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index for Tti for all i. For all e, i ∈ ω let Ue,ti = {σ ∈ Tti : Φσe (e) ↑}. Then, for each
e define

De = { Ue,ti : i ∈ ω & |Ue,ti | =∞ } ∪ { Tti : i ∈ ω & |Ue,ti | <∞ }

and let D = {De : e ∈ ω}. It is not difficult to see that each De is 0′-effectively
dense (notice that we can find an index for Ue,ti computably from an index for
Tti). The Low Basis Theorem is obtained by taking a D-generic f and a function
p ≤T ∅′ according to Theorem 4.2(ii), and pointing out that e ∈ f ′ if and only if
|Ue,p(e)| 6=∞ (which ∅′ can decide).

4.2. Forcing Modules. In the literature, authors customarily refer to dense sets
only implicitly, preferring instead, as we did in our original proof of the Low Basis
Theorem, to describe the strategy for obtaining Te+1 from Te in the proof of The-
orem 4.2 directly. We follow this convention below, but of course we could always
translate any argument employing forcing with Π0

1 classes into the (more formal)
language of the previous subsection.

We can obtain a wide array of basis results by modifying the strategy for obtain-
ing Te+1 from Te in Theorem 4.2, or, in more complicated constructions, by varying
it depending on e. We think of each such strategy as a module for forcing with Π0

1

classes. As we will see, these modules can then be variously combined to produce
different basis results. So as to have as much flexibility as possible in doing this,
we describe each of these modules separately. We keep track of the effectiveness
in each module, i.e., of how much oracle strength was needed in its proof, so as to
gauge how effective any basis result employing this module will be.

Let us illustrate the module concept by looking at a module we have already seen
implemented, namely that used in the proof of the Low Basis Theorem. A quick
examination of that proof reveals that it consists just of iterations of this module
for all e ∈ ω.

Lemma 4.3 (Lowness Module). Let T be an infinite computable tree and let i ∈ ω.

There exists an infinite computable subtree T̃ ⊆ T such that either Φfi (i) ↓ for all

f ∈ [ T̃ ], and hence i ∈ f ′; or else Φfi (i) ↑ for all f ∈ [ T̃ ], and hence i /∈ f ′.

Moreover, an index for T̃ can be obtained ∅′-uniformly from i and an index for T .

The utility of having the lowness module by itself is that we can intersperse it
with others, and obtain paths that, in addition to satisfying other properties, are
low. However, we must be careful that those other modules are also uniform in ∅′:
mixing the lowness module together with, for example, one requiring a ∅′′ oracle
will produce a path f satisfying only f ′ ≤T ∅′′.

4.3. Examples of Modules. What follows are several examples of forcing mod-
ules, and details about how they can be combined to generate ever more sophisti-
cated basis theorems for Π0

1 classes.

4.3.1. Cone Avoidance Modules. Cone avoidance and Turing incomparability, like
lowness, are measures of the complexity of a set. The modules we present next,
and the basis theorems they yield, show that no nonempty Π0

1 class exists whose
every member must compute or be computable from a given noncomputable set.
We begin with the following module for obtaining upper cone avoidance. The
subsequent theorem is obtained by a straightforward iteration.
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Lemma 4.4. Let C be a noncomputable set, T an infinite computable tree, and

i ∈ ω. There exists an infinite computable subtree T̃ ⊆ T such that C 6= Φfi for any

f ∈ [ T̃ ]. An index for T̃ can be found (∅′ ⊕ C)-effectively from i and an index for
T .

Proof. For each n ∈ ω, define

Un = {σ ∈ T : Φσi (n) ↑ ∨Φσi (n)↓ 6= C(n)},
noting that each of these is a computable tree whose index as such can be found
C-effectively from i and an index for T . We claim that some Un must be infinite.
If not, then for each n we could find a level m and value k such that Φσi (n) ↓= k
for all σ of length m, whence it would have to be that C(n) = k, so C would be
computable. We ∅′-computably search for the least n such that Un is infinite, and

let T̃ = Un. Clearly, Φfi C for all f ∈ T̃ , as desired. �

Theorem 4.5 (Upper Cone Avoidance Basis Theorem). Let C be a noncomputable
set. Every nonempty Π0

1 class has a member that does not compute C.

Since every set computes every computable set, to get an analogous result for
lower cone avoidance we must obviously insist that the Π0

1 classes we deal with
be special. The next module and subsequent theorem show that this is the only
restriction needed.

Lemma 4.6. Let C be any set, T an infinite computable tree with no computable

paths, and i ∈ ω. There exists an infinite computable subtree T̃ ⊆ T such that

f 6= ΦCi for any f ∈ [T̃ ]. Moreover, an index for T̃ can be found C ′-effectively from
i and an index for T .

Proof. Since T has no computable paths, it must contain at least two incompatible
extendible nodes. Call the least such nodes σ and τ , and say n < min{|σ|, |τ} is
least such that σ(n) 6= τ(n). Ask C ′ whether ΦCi (n) converges. If so, then one

of the two strings, say σ, must disagree with ΦCi on n, and we let T̃ consist of all

nodes in T compatible with σ. In this case, f(n) = σ(n) for all f ∈ [T̃ ], so clearly

ΦCi 6= f for all such f . Otherwise, we let T̃ = T , and in this case the result follows
trivially. �

Theorem 4.7 (Lower Cone Avoidance Basis Theorem). Let C be any set. Every
special Π0

1 class has a member that is not computable by C.

We now combine both the preceding modules, as well as the lowness module,
into a single basis theorem. This is a standard “weaving argument”, where we
alternate (in this case, three) strategies depending on e (in this case, depending as
e is congruent to 0, 1, or 2 modulo 3) . For completeness, we include the details.

Theorem 4.8 (Incomparability Basis Theorem). Let C0, C1, . . . be a sequence of
noncomputable sets, and let D = ⊕j∈ωC ′j. Every special Π0

1 class has a member f
which is Turing incomparable with C and satisfies f ′ ≤T D.

Proof. Fix a nonempty Π0
1 class C and a computable tree T ⊆ 2<ω such that C = [T ].

We build a sequence of infinite computable trees T = T0 ⊇ T1 ⊇ · · · as follows. Let
Te be given. If e = 3i, apply the lowness module, Lemma 4.3, with Te in place of

T , and let Te+1 be the tree T̃ obtained there. If e = 3〈i, j〉+ 1 for some i, j, apply

Lemma 4.4 with Te in place of T and Cj in place of C, and let Te+1 be the tree T̃
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obtained there. And if e = 3〈i, j〉+ 2, apply Lemma 4.6 in a similar fashion. Since
∅′ ≤T D and C ′j ≤T D for all j, in either case, D suffices to find an index for Te+1

from an index for Te. The proof is concluded by taking f ∈
⋂
e∈ω [Te ]. The stages

congruent to 0 modulo 3 ensure that f ′ ≤T D, the stages congruent to 1 modulo 3
that C �T f , and those congruent to 2 modulo 3 that f �T C. �

The following now easily follow.

Corollary 4.9. Let L0, L1, . . . be noncomputable low sets such that a lowness index
for Li can be found ∅′-effectively from i. Every special Π0

1 class has a member that
is low and Turing incomparable with each Li.

Corollary 4.10 (Jockusch and Soare, 1972b). Every special Π0
1 class has countably

many low members that are mutually incomparable.

4.3.2. Minimal Pair Module. Recall that a pair of degrees a and b is said to form
a minimal pair if a ∩ b = 0. (We do not, as some authors do, insist that a and
b must also be nonzero.) The following module prepares for proving the Minimal
Pair Basis Theorem.

Lemma 4.11. Let C be any set, T an infinite computable tree, and i, j ∈ ω. There

exists an infinite computable subtree T̃ ⊆ T such that if Φfi = ΦCj = A for some

f ∈ [T̃ ] and some set A, then A is computable. Moreover, an index for T̃ can be
found (∅′′ ⊕ C ′)-effectively from i, j, and an index for T .

Proof. We begin by asking whether there exist extendible nodes σ, τ ∈ T and an
x ∈ ω such that Φσi (x) ↓6= Φτi (x) ↓ . This can be done using a ∅′′ oracle, since
the question of whether a given node of a computable tree is extendible is Π0

1. If

not, then whenever Φfi is total for some f ∈ [T ] it must be computable, since to

figure out the value of Φfi (x) we have only to find some σ ∈ T , such as a sufficiently

long initial segment of f , with Φσi (x) ↓. In this case, then, we can let T̃ = T . So
suppose some such σ and τ exist, and fix the least such. Next, use C ′ to determine
whether ΦCj (x) converges and is {0, 1}-valued. If not, then the conclusion of the

lemma holds trivially, and so we can again just let T̃ = T . Otherwise, one of the

two computations, say Φσi (x), must differ from ΦCj (x), and we let T̃ consist of all

nodes of T compatible with σ. In this case, Φfi 6= ΦCj for any f ∈ [T̃ ]. �

Iterating in the standard way yields the following:

Theorem 4.12 (Minimal Pair Basis Theorem). Let C be any set. Every Π0
1 class

has a member f such that deg(f) and deg(C) form a minimal pair.

Proof. Fix a nonempty Π0
1 class C and a computable tree T ⊆ 2<ω such that

C = [T ]. We build a sequence of infinite computable trees T = T0 ⊇ T1 ⊇ · · · as
follows. Let Te be given, and suppose e = 〈i, j〉 for some i, j ∈ ω. Apply the

preceding Lemma to the tree Te, and let Te+1 be the tree T̃ obtained there. Then

take f ∈
⋂
e∈ω [Te ]. The definition of Te+1 from Te ensures that Φfi and ΦCj are

only the characteristic function of a set if that set is computable. Hence, deg(f)
and deg(C) form a minimal pair, as desired. �
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By interspersing an additional module into the preceding construction, namely
the low2ness module used to control the double jump of f in the proof of the Com-
putably Bounded Basis Theorem 3.13, we obtain the following stronger theorem.
Note that that module can be carried out using a ∅′′ oracle.

Theorem 4.13. Let C be any set. Every Π0
1 class has a member f such that

f ′′ ≤T ∅′′ ⊕ C ′ and deg(f) and deg(C) form a minimal pair.

The following corollaries are then immediate. The first of these was used by
Dzhafarov and Jockusch [2009] to show that every computable coloring of pairs has
a pair of infinite homogeneous sets whose degrees form a minimal pair.

Corollary 4.14. Let C be any set with C ′ ≤T ∅′′. Every Π0
1 class has a low2

member f such that deg(f) and deg(C) form a minimal pair.

Corollary 4.15. Every Π0
1 class has a pair of low2 members whose degrees form a

minimal pair.

Of course, we cannot expect the Minimal Pair Basis Theorem to hold in general
with a low f , or even a lown f for any n, since we could always choose the non-
computable set C to be ∅n and thereby get f ≤T C. But more is true: we cannot
get a low f even when C is itself low. In Section 6, we will see the existence of a
Π0

1 class all of whose members have diagonally noncomputable (DNC) degree. If
we let C be any low member of this Π0

1 class, then by a theorem of Kučera [1986],
no ∆0

2 (let alone low) member of this class can have degree forming a minimal pair
with deg(C). (Note that this also shows that Corollary 4.15 cannot be improved
from a minimal pair of low2 members to a minimal pair of low ones.)

We should point out another well-known connection between minimal pairs and
Π0

1 classes. This is not a basis theorem, and is not proved by the methods discussed
in this section, but it provides an interesting connection to Corollary 4.15.

Theorem 4.16 (Jockusch and Soare, 1971). There exist nonempty special Π0
1

classes C0 and C1 such that for all f ∈ [ C0 ] and g ∈ [ C1 ], deg(f) and deg(g)
form a minimal pair.

The proof, which we omit, is based on that of the classical result, due independently
to Lachlan and Yates, that there exists a minimal pair of c.e. degrees.

5. Computably Dominated Sets and Degrees

5.1. Computably Bounded Functions and Trees. We can extend the notions
of Π0

1 class and tree by replacing Cantor space 2ω by Baire space ωω and the tree
2<ω by ω<ω. Theorem 2.4 on effectively closed classes (Π0

1 classes) still holds but
the effective compactness Theorem 2.9 fails. However, we can still obtain the former
results if we restrict to functions and Π0

1 classes which are computably bounded. (The
definition of a function g(x) being computably bounded was given in Definition 3.12
above.)

Definition 5.1.

(i) A tree T ⊆ ω<ω is computably bounded (c.b.) if there is a computable
function h such that (∀g ∈ [T ]) (∀x) [ g(x) ≤ h(x) ].

(ii) A Π0
1 class C is computably bounded (c.b.) if there is a computably

bounded computable tree T ⊆ ω<ω such that C = [T ].
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Obviously, all Π0
1 subclasses of 2ω are computably bounded, their members being

bounded by the constant function h(x) = 1. But in fact, these h(x) = 1 bounded
classes suffice for the purposes of studying the computable content of members of
computably bounded Π0

1 classes in general, as the following proposition shows. The
next propositions are easy exercises.

Proposition 5.2. If T ⊆ ω<ω is a computably bounded, computable tree then there
is a computable tree S ⊆ 2<ω and a computable map h : T → S such that h induces

a homeomorphism ĥ : [T ]→ [S ] which preserves Turing degree.

Proposition 5.3. If T ⊆ ω<ω is computable and finite branching (but not neces-
sarily computably bounded) then it is bounded by a function h ≤T 0′.

Therefore, all results about c.b. computable trees hold for finite branching com-
putable trees if the assertions are relativized to 0′.

5.2. Post’s Hyperimmune Sets. Post’s Problem [1944] was the famous problem
of finding an incomplete but noncomputable c.e. set W . To accomplish this, he
defined various notions of thinness on the complement W . These are described in
detail in Soare [CTA] and [1987]. We now describe them only very briefly.

Post called an infinite set A hyperimmune (h-immune) if there is no strong array
{Df(x) }x∈ω of disjoint finite sets such that Df(x) ∩ A 6= ∅ for all x. (A strong
array is an array {Df(x)}x∈ω where f is a computable function and Dn is the set
of positions of ones in the binary representation of n.) This definition in terms of
strong arrays was then related to computably bounding properties.

Theorem 5.4 (Kuznecov, Medvedev, Uspenskii). An infinite set A is hyperimmune
iff its principal function pA (of Definition 3.12) is not bounded by any computable
function.

Proof. See Soare [1987, Theorem V.2.3]. �

Many authors and we also in the paper will take Theorem 5.4 as a definition of
hyperimmune (h-immune). A coinfinite c.e. set W is hypersimple (h-simple) if W
is h-immune.

Corollary 5.5. A coinfinite c.e. set B is h-simple iff B is not bounded by any
computable function.

Dekker [1954] connected bounding functions to the computation time of c.e. sets.
He proved that for every noncomputable c.e. set B there is a hypersimple set A
such that A ≤tt B ≤T A. Let f be any one-one computable function with range
B. Dekker defined the deficiency set to be

(16) A = { s : (∃t > s) [ f(t) < f(s) ] }.

The rest of the proof is given in Soare [1987, Theorem V.2.5]. The key point is that
if a computable function h bounds A then A is computable.

Corollary 5.6. For every noncomputable c.e. set B there is an h-simple set A ≡T

B. Hence, every nonzero c.e. degree contains an h-simple set. �
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5.3. Hyperimmune Degrees. The previous work by Post, Dekker, and Martin
and Miller [1968] extended these definitions from a single set to an entire degree by
defining a degree to be hyperimmune if it contains a hyperimmune set.

Definition 5.7 (Miller and Martin, 1968).

(i) A degree d is hyperimmune (h-immune) if it contains a hyperimmune
set.

(ii) If degree d contains no hyperimmune set it is called hyperimmune-free
(hi-free) (since it is free of hyperimmune sets). It is also called computably
dominated according to Definition 3.12 because by Theorem 5.4 every set
B ∈ d is dominated by a computable function. The second term conveys
more intuition about the meaning.

Corollary 5.6 shows that every nonzero c.e. degree is h-immune. The next few re-
sults will demonstrate that every nonzero degree comparable with 0′ is h-immune,
showing that the computably dominated degrees are scarce. However, by Theo-
rem 3.13 at least one nonzero computably dominated degree exists.

5.4. Two Downward Closure Properties of Domination. Recall Definition 3.12 (vi)
on computably dominated functions and sets. The key point is that for a function f
or set A to be computably bounded simply requires a single bounding function, while
being computably dominated imposes computable bounding on every function g in
the same degree, a very strong condition. Remarkably, it turns out not to matter
whether we insist on having this condition for all g ≤T f or merely for all g ≡T f .

Theorem 5.8 (Miller and Martin, 1968). Suppose A is computably dominated.

(i) If B ≤T A, then B is computably dominated.
(ii) If g ≤T A, then g is computably dominated.

Proof. (i) Let B = ΦAe . Define g(x) as follows. Let g(0) = 0. For every x ∈ ω
define g(2x+ 1) = g(2x) + pB(x) + 1 and g(2x+ 2) = g(2x+ 1) + pA(x) + 1. Now
g is strictly increasing and therefore is the principal function of some set C ≡T A.
Therefore, some computable function h dominates g = pC . But then h(2x + 1)
dominates pB(x).

(ii) Let f = ΦAe . Define g(0) = 0. For every x ∈ ω define g(x+1) = g(x)+f(x)+1.
Now g is strictly increasing and therefore is the principal function of some set
C ≡T f . Therefore, some computable function h dominates g = pC . But then
h(x+ 1) dominates f(x). �

Corollary 5.9. The hyperimmune degrees are closed upwards and the computably
dominated degrees are closed downwards.

Proof. By Theorem 5.8. �

Theorem 5.10. A set A is computably dominated iff for every total function f ,

(17) f ≤T A =⇒ f ≤tt A.

Proof. (=⇒). Suppose that A is computably dominated and f = ΦAe . Define
g(x) = (µs)ΦAe,s(x) ↓. Now g ≤T A. Therefore, by Theorem 5.8 there exists some

computable function h which bounds g. Define a Turing functional ΨX(x) which,
on any input x and oracle X, runs ΦX on input x for h(x) many steps, and outputs
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ΦXe (x) if the latter converges and 0 otherwise. Then ΨX is total for every X and
ΨA = ΦAe .

(⇐=) (Jockusch [1969]). Assume (17). Let f ≤T A. Then f ≤tt A. It suffices to
prove that f is computably dominated. Fix a total reduction Φe such that f = ΦAe .
Define a computable function h as follows. Given x, we search for a level n such
that Φσe (x)↓ for all σ of length n. Such a level must necessarily exist, as otherwise
{σ : Φσe (x)↑ } would be an infinite tree, and Φge(x) would not converge for any path
g through it. Let h(x) = max{Φσe (x) : |σ| = n}. Clearly, h dominates f . �

5.5. ∆0
2 Degrees are Hyperimmune. Every nonzero c.e. degree is hyperimmune

because it contains a hypersimple set. We now prove that nonzero degrees d < 0′

are also hyperimmune. We also explore the Σ0
2 and other degrees with respect to

computable domination.

Definition 5.11. Let A be a ∆0
2 set and let {As}s∈ω be a computable sequence

such that A = limsAs. The computation function is

(18) cA(x) = (µs > x) [ As �� x = A�� x ],

where A�� x denotes the restriction of A to elements y ≤ x.

Theorem 5.12. Let A be ∆0
2 and {As}s∈ω a ∆0

2 approximation to A with compu-
tation function cA(x).

(i) cA ≡T A.
(ii) If g(x) dominates cA(x) then A ≤T g. Therefore, A is computable iff a

computable function g dominates cA(x).

Proof. (i) A ≤T cA because A(x) = As(x) for s = cA(x). Also cA(x) ≤T A because
we generate As(x) until the first s with A�� x = As �� x.

(ii) If A is computable then cA is computable by (i). Conversely, assume cA(x) <
g(x) for all x. Define

(19) y = (µz > x) (∀t)z≤t≤g(z) [ At �� x = Az �� x ].

By the definition of cA(x) and the fact that cA(x) < g(x) we know that for all z ≥ x
the interval [ z, g(z) ] (called a z-frame) must contain at least one stage t which
is z-true in the sense that At �� z = A �� z. Since z > x, it must also be x-true.
Therefore, A(x) = Ay(x), because all values for x in the y-frame agree by (19) and
one must be x-true. �

Corollary 5.13 (Miller and Martin, 1968). If ∅ <T A ≤T ∅′ then deg(A) is
hyperimmune.

Proof. Let ∅ <T A ≤T ∅′. Hence, A ∈ ∆0
2. By Theorem 5.12 no computable func-

tion can dominate cA ≡T A. Therefore, by Theorem 5.8 A cannot have computably
dominated degree. �

Corollary 5.14. If a degree d is comparable with 0′ then d is hyperimmune (not
computably dominated).

Proof. By Corollary 5.13 all degrees d ≤ 0′ are hyperimmune. By the upward
closure of hyperimmune degrees in Theorem 5.8 all degrees d > 0′ are also hyper-
immune. �
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The next result generalizes Corollary 5.13 and show that most degrees obtained
by iterating the jump are hyperimmune.

Corollary 5.15 (Miller and Martin, 1968). If B <T A ≤T B′ then deg(A) is
hyperimmune.

Proof. The set A is ∆0,B
2 and there is a B-computable sequence {As}s∈ω such that

A = limsAs by Definition 5.11 relativized to B. Define the computation function
cA as there. If any computable (or even B-computable) function h dominates cA
then A ≤T B, contrary to hypothesis. �

Theorem 5.16. If A is computably dominated, then A′′ ≤T A′⊕∅′′. (In particular,
since A′ ⊕ ∅′′ ≤T (A⊕ ∅′)′, A is GL2.)

Note that it is easy to prove the weaker fact that A is GL2. Indeed, by Martin’s
High Domination Theorem, there exists f ≤T ∅′ which dominates every computable
function. Since A is computably dominated, every A-computable function is domi-
nated by a computable function, and hence by f . Thus, by Martin’s High Domina-
tion Theorem relative to A, A⊕ ∅′ is high relative to A, meaning A′′ ≤T (A⊕ ∅′)′.

Proof. We prove that TotA ≤T A′ ⊕ ∅′′. Given e ∈ ω, we can computably find an
index e0 of the partial A-computable function

g(x) = (µs)[ ΦAe,s(x) ↓ ],

noting that this function has the same domain as ΦAe and so, in particular, is total
if and only if ΦAe is. We then search for the least 〈i, n〉 such that i ∈ Tot and either

(20) (∃x < n)(∀s)[ ΦAe0,s(x) ↑ ]

or

(21) (∀x ≥ n)(∀s)[ ΦAe0,s(x) ↓ =⇒ ΦAe0,s(x) ≤ ϕi(x) ],

which we can do using an oracle for A′ ⊕ ∅′′. Furthermore, the search necessarily
terminates. Indeed, if ΦAe0 is not total, then (20) holds for any n such that ΦAe0(x) ↑
for some x < n. And if ΦAe0 is total then it is dominated by some computable
function ϕi by virtue of A being computably dominated, and so (21) holds for all
sufficiently large n. By choice of e0 and 〈i, n〉, we have that ΦAe is total if and only
if

(∀x < n)[ ΦAe (x) ↓ ] & (∀x ≥ n)(∃s ≤ ϕi(x))[ ΦAe,s(x) ↓ ],

which can be determined using A′. This completes the proof. �

5.6. Degrees of Σ0
2 Sets. There are other classes of sets below 0′′ such as the Σ0

2

sets. We now show that these include additional sets of hyperimmune degree.

Definition 5.17.

(i) A computable sequence {As}s∈ω is a Σ0
2 approximation to a Σ0

2 set A if

(22) x ∈ A ⇐⇒ (∀∞s)[ x ∈ As ].

(ii) For such a Σ0
2 sequence define the Σ0

2 estimation function

(23) EA(x) = (µs ≥ x)(∀z ≤ x)[ z ∈ A =⇒ (∃t)x≤t≤s[z 6∈ At ]].

(This estimation function plays the same role as the computation function played
for ∆0

2 sets.)
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Theorem 5.18. Let A be a Σ0
2 set and let {As}s∈ω be a Σ0

2 approximation to A
with EA(x) the Σ0

2 estimation function. If a computable function dominates EA(x)
then A is computably enumerable.

Proof. Let A be Σ0
2. Now assume that (∀x)[g(x) ≥ EA(x)]. From (22) and (23) we

know,

(24) (∀x) [ x ∈ A =⇒ (∀y > x)(∃t)y≤t≤g(y) [ x 6∈ At ] ],

(25) (∀x) [ x ∈ A ⇐⇒ (∃y > x)(∀t)y≤t≤g(y) [ x ∈ At ] ].

Therefore, A is Σ0
1 in g. If g is computable, then A is Σ0

1 and hence c.e. �

Corollary 5.19. If A is Σ0
2 and noncomputable then deg(A) is hyperimmune.

The results here that various degrees cannot be computably dominated are based
on the fact that in the ∆0

2 and Σ0
2 cases, we have an approximation to A and the fact

that a computable function dominating the computation function shows that A is
computable or c.e. In contrast, the Computably Bounded Basis Theorem 3.13 pro-
duces a computably bounded set A ≤T ∅′′ (in fact, uncountably many). Hence, A is
∆0

3 but it cannot be Σ0
2 or comparable with ∅′. Therefore, we can find computably

dominated degrees but they are not abundant.

6. Peano Arithmetic and Π0
1 Classes

6.1. Logical Background. One of the earliest purposes of computability theory
was the study of logical systems and theories. We consider theories in a computable
language: one which is countable, and the function, relation, and constant sym-
bols and their arities are effectively given. We also assume that languages come
equipped with an effective coding for formulas and sentences in the language, i.e. a
Gödel numbering, and identify sets of formulas with the corresponding set of Gödel
numbers. We can then speak of the Turing degree of a theory in a computable
language. Here we will examine the language L = {+, ·, <, 0, 1} of arithmetic, and
theories extending PA, the theory of Peano arithmetic.

Definition 6.1. Let DPA be the set of (Turing) degrees of complete consistent
extensions of Peano arithmetic; such degrees are called a PA degrees.

The following is surely the best known theorem in mathematical logic:

Theorem 6.2 (Gödel, 1931; Rosser, 1936).

(i) The theory of Peano arithmetic is incomplete.
(ii) Furthermore, any consistent computably axiomatizable extension of PA

is also incomplete.6

Corollary 6.3. 0 /∈ DPA.

Thus, there is no complete consistent extension of PA which is computable.
However, there are many ways to extend PA to a complete theory, and there is a
very nice way of describing them. We identify a completion of Peano Arithmetic
with the set of Gödel numbers of its sentences.

6There are weaker hypotheses which suffice for the incompleteness theorem, but this version
of the theorem is all that is needed here.
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6.2. Π0
1 classes and completions of theories.

Theorem 6.4. There exists a Π0
1 class whose members are precisely the completions

of Peano Arithmetic. Thus DPA is the degree spectrum of a Π0
1 class.

Proof. Fix a bijective Gödel numbering G : ω → SentL for sentences of arithmetic.
Given σ ∈ 2<ω, we identify σ with the sentence

θ(σ) =
∧

σ(i)=1

G(i) &
∧

σ(j)=0

¬G(j).

We say that a sentence θ “appears to be consistent at stage t” if there is no deriva-
tion of ¬θ from the first t axioms of PA in fewer than t lines. Since there are finitely
many such derivations, the relation R(σ, t) = “θ(σ) appears to be consistent at stage
t” is computable. Thus the class

C = { f ∈ 2ω : (∀n)(∀t < n)R(f � t, n) }

is a Π0
1 class. Some f is an element of this class if and only if the corresponding set

of sentences G({n : f(n) = 1}) is a complete consistent extension of PA. �

Remark 6.5. This theorem follows from an analysis of Lindenbaum’s lemma. Note
that no special properties of PA were used, beyond the fact that it is a computably
axiomatizable theory in a computable language. Thus the same theorem applies to
all such theories.

We defined a PA degree as a degree of a completion of Peano Arithmetic. From
this definition, it may be surprising that the class of degrees is closed upwards. This
is true, however, and to demonstrate it we will need an important fact arising from
Gödel’s incompleteness theorem: the proof actually constructs a “Gödel sentence”
which is independent of the axioms.

Theorem 6.6 (Gödel’s Incompleteness Theorem, effective version).

From a description of a consistent, computably axiomatizable theory T extending
PA, we can effectively find a sentence, called the Gödel sentence of T , which is
independent from T .

6.3. Equivalent properties of PA degrees. The PA degrees arise naturally in
a variety of contexts, especially those relating to trees and Weak König’s Lemma.
This is because the PA degrees are exactly those degrees which can carry out Weak
König’s Lemma by finding paths through trees. For this reason, there are several
equivalent properties which all serve to define the PA degrees; we will highlight a
few of these properties.

Definition 6.7. A function f : ω → ω is diagonally noncomputable (d.n.c.) if, for
all e, if ϕe(e)↓ , then f(e) 6= ϕe(e).

Definition 6.8. A function is n-valued if f(e) < n for each e ∈ ω.

The name “diagonally noncomputable” derives from the particular way that
d.n.c. functions are noncomputable. We see that if f is d.n.c., f cannot be com-
putable, because then f would be ϕe for some e, but f and ϕe differ on argument
e; thus d.n.c. functions diagonalize against all (partial) computable functions. We
will be primarily interested in 2-valued d.n.c. functions.
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Theorem 6.9 (Scott, 1962; Jockusch and Soare, 1972b; Solovay, unpublished). 7

For a Turing degree d, the following are equivalent:

(i) d is the degree of a complete consistent extension of Peano arithmetic.
(ii) d computes a complete consistent extension of Peano arithmetic.

(iii) d computes a 2-valued d.n.c. function.
(iv) Every partial computable 2-valued function has a total d-computable ex-

tension.
(v) Every nonempty Π0

1 class has a member of degree at most d.
(vi) Every computably inseparable pair has a separating set of degree at most

d.

Proof. (i) =⇒ (ii). This implication is trivial.

(ii) =⇒ (iii). Let d compute a complete consistent extension T of PA, and let
f be the (partial computable) diagonal function f(e) = ϕe(e). By results of Gödel
and Kleene, there is a formula ψ representing f , in the sense that

f(x)↓= y ⇐⇒ PA ` ψ(x, y), and

f(x)↓ 6= y ⇐⇒ PA ` ¬ψ(x, y).

Since PA ` ψ(x, y) implies that ψ(x, y) ∈ T , and T is complete and d-computable,
the function

f̂(e) =

{
1 ψ(e, 0) ∈ T
0 ¬ψ(e, 0) ∈ T

is a d-computable 2-valued d.n.c. function.

(iii) =⇒ (iv). Suppose g is a 2-valued d.n.c. function, and let f be a partial

computable 2-valued function. There is a computable function f̂ such that f(x) =

ϕf̂(x)(f̂(x)) for all x. Then 1 − (g ◦ f̂) is a total d-computable 2-valued function

extending f .

(iv) =⇒ (v). Let P be a nonempty Π0
1 class, and T a computable tree with

P = [T ]. Fix a computable bijection h : ω → 2<ω. Let f be the function

f(e) =


0

h(e) ∈ T and there is a level l such that h(e)̂0

has an extension of length l in T , but h(e)̂1 does not

1
h(e) ∈ T and there is a level l such that h(e)̂1

has an extension of length l in T , but h(e)̂0 does not.

This function f is partial computable, since to compute f(e) one simply searches
for a level l such that one case or the other holds. If h(e) ∈ T is extendible, then
either both h(e)̂0 and h(e)̂1 are extendible, in which case f(e)↑ , or only one is,

so f(e)↓ , and h(e)̂f(e) is extendible. Let f̂ be a 2-valued d-computable extension

of f . Then using f̂ , we can find an element of [T ] as follows: starting with any

string σ ∈ T ext, apply f̂ ◦ h−1 to get either 0 or 1, which we can append to σ to

7Scott [1962] proved the equivalence of conditions (i) and (v). Jockusch and Soare [1972b]

proved the equivalence of conditions (ii) and (vi); the equivalence with (iii) and (iv) is also implicit
in their work. Jockusch and Soare left the equivalence of (i) and (ii) as an open question, which

was answered by Solovay (unpublished).
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get a longer string still in T ext. Starting with the empty string, we can iterate this
process to get an infinite d-computable path through [T ], i.e. an element of P.

(v) =⇒ (vi). If A,B is a computably inseparable pair, the class of separating
sets is a Π0

1 class by Theorem 3.4.

(vi) =⇒ (i). Fix some order of L-sentences, and some order for generating proofs.
Let A be the set of pairs (F,ψ), where F is a finite set of L-sentences and ψ is
an L-sentence, such that a proof of a contradiction is found from PA ∪ F ∪ {ψ}
before (if ever) finding a proof of a contradiction from PA ∪ F ∪ {¬ψ}. Similarly,
let B be the set of pairs (F,ψ), such that a proof of contradiction is found from
PA ∪ F ∪ {¬ψ} before (if ever) finding one from PA ∪ F ∪ {ψ}. Clearly A and B
are disjoint c.e. sets. Suppose the pair A,B has a d-computable separating set C.
Let D ∈ d. We will construct a completion T of PA, of degree d, in stages, along
with a bijective function g : ω → SentL, also defined in stages. At stage n we will
determine g(n), and decide whether g(n) ∈ T . Define the set of sentences,

Fn = (T ∩ g[0 . . . n− 1]) ∪ {¬ψ : ψ ∈ g[0 . . . n− 1] \ T}.

In other words, Fn keeps track of every sentence we decided by the beginning of
stage n. It contains those sentences we have declared to be in T , together with the
negations of those sentences we have declared not to be in T . At stage n, do the
following:

1. If n is even, let g(n) be the Gödel sentence of PA ∪ Fn. If n is odd, let g(n) be
the first L-sentence not yet in the range of g.

2. If n = 2s is even, consider whether s is an element of D. If s ∈ D, then
g(n) ∈ T ; otherwise, g(n) /∈ T .

3. If n is odd, consider the pair (Fn, g(n)). If this pair is in C, then g(n) /∈ T ;
otherwise, g(n) ∈ T .

We will show that T is a complete consistent extension of PA, of degree d.
Assume (for the sake of induction) that Fn is consistent with PA. (Since F0 = ∅, it
is consistent with PA.) Note that Fn+1 is either Fn ∪ {g(n)} or else Fn ∪ {¬g(n)}.
Since Fn is consistent with PA, at least one of Fn ∪ {g(n)} and Fn ∪ {¬g(n)} must
be consistent with PA. Furthermore, if n is even, both are consistent since g(n)
is the Gödel sentence for PA ∪ Fn. If both are consistent with PA, then clearly
Fn+1 is as well. Suppose instead only one of the two is consistent (so we know n
is odd). If only Fn ∪ {g(n)} is consistent with PA, then a proof of contradiction
will be found from PA ∪ Fn ∪ {¬g(n)} before finding one from PA ∪ Fn ∪ {g(n)},
so (Fn, g(n)) ∈ B. Thus (Fn, g(n)) /∈ C; by the construction, g(n) ∈ T , and Fn+1

is consistent with PA. Similarly, if only Fn ∧ ¬g(n) is consistent with PA, then
the construction goes the opposite way and again Fn+1 is consistent with PA. By
induction, Fn is consistent with PA for all n, so T =

⋃
n Fn is consistent with

PA. Since Fn decides g(0) . . . g(n − 1), T is complete. Therefore, T is a complete
consistent extension of PA.

In order to show that T has degree d, we first show that g ≤T T . To see this,
note that g(n) is either the first L-sentence which is not one of g(0) . . . g(n − 1),
if n is odd, or else g(n) is the Gödel sentence of PA ∪ Fn, where Fn is determined
entirely by T and the values g(0) . . . g(n− 1). Thus g(n) can be computed from n,
g(0) . . . g(n−1), and T , so g ≤T T . From the construction, we see that s ∈ D if and
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only if g(2s) ∈ T , so we have D ≤T g ⊕ T ≤T T . However, the entire construction
was d-computable, so T ∈ d. �

7. Applications to randomness

In this section, we explore some of the interactions between, on the one hand,
Π0

1 classes and computably dominated degrees, and, on the other hand, the study
of algorithmic randomness and complexity

7.1. Martin-Löf Randomness. Let µ be Lebesgue measure on Cantor space,
which we assume the reader to be familiar with. For completeness, we define the
measure of an open class U ⊆ 2ω. Let V ⊂ 2<ω be any set with U = [[V ]] which
is prefix-free (i.e., if σ ∈ V and τ ≺ σ then τ /∈ V ). Such a V can be seen to exist
for example as follows. Since U is open, its complement is a Π0

1 class and hence is
equal to [T ] for some (not necessarily computable) tree T ⊆ 2<ω. Then V can be
taken to consist of all elements of T whose predecessors all belong to T . Now the
measure of U is defined as

µ(U) =
∑
σ∈V

2−|σ|.

Lebesgue measure on Cantor space has all the same properties we are familiar with
from Lebesgue measure on the real line. In fact, another definition of Lebesgue
measure on Cantor space is that the measure of a class U ⊆ 2ω is the same as
that of the subset {r(f) : f ∈ U} of the closed unit interval [0, 1], where r(f) for
f ∈ 2ω is the the real number with binary expansion 0.f(0)f(1)f(2) · · · . Recall
that a sequence of c.e. sets V0, V1, . . . is uniformly c.e. (abbreviated u.c.e.) if there
exists a computable function f such that Vn = Wf(n) for all n.

Definition 7.1.

(i) A sequence S0, S1, . . . of subclasses of 2ω is uniformly Σ0
1 if there exists

a u.c.e. sequence V0, V1, . . . of subsets of 2<ω such that Sn = JVn K for all
n.

(ii) A Martin-Löf test is a uniformly Σ0
1 sequence S0, S1, . . . of subclasses of

2ω such that µ(Sn) ≤ 2−n for all n.
(iii) A set X ∈ 2ω passes a Martin-Löf test S0, S1, . . . if X /∈

⋂
n∈ω Sn.

(iv) A set X ∈ 2ω is Martin-Löf random or 1-random if it passes every
Martin-Löf test.

7.2. A Π0
1 Class of 1-Randoms. A Martin-Löf test U0, U1, . . . is called universal

if
⋂
n∈ω Un ⊇

⋂
n∈ω Sn for every other Martin-Löf test S0, S1, . . .. Thus, if X passes

a universal test, it must pass every test, and hence⋂
n∈ω

Un = { X ∈ 2ω : X is not 1-random }.

The following proposition, whose proof we omit, is thus useful when trying to show
that a given set is not 1-random.

Proposition 7.2. There exists a universal Martin-Löf test.

Notice that this implies that the class of 1-randoms has measure 1. Indeed, each
member of a universal Martin-Löf test U0, U1, . . . is an open set covering {X ∈ 2ω :
X is not 1-random}, implying that

µ({X ∈ 2ω : X is not 1-random}) ≤ µ(Un) ≤ 2−n
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for all n. Essentially the same argument, in reverse, yields the following:

Corollary 7.3. There is a nonempty Π0
1 class all of whose elements are 1-random.

Proof. Let U0, U1, . . . be a universal Martin-Löf test. For every n > 0, Un is a
proper Σ0

1 subclass of 2ω, implying that Un is a nonempty Π0
1 class. By definition

of a universal Martin-Löf test,

Un ⊆
⋃
n∈ω

Un =
⋂
n∈ω

Un = {X ∈ 2ω : X is 1-random},

as desired. �

Thus we can easily obtain the existence of low 1-random sets, of hyperimmune-free
1-random sets, etc.

We mention briefly that Corollary 7.3 does not hold if 1-randomness is replaced
by n-randomness for n > 1 (a set being n-random if it is 1-random relative to
∅(n−1)). That is, for n > 1, there is no nonempty Π0

1 class all of whose members
are n-random.8 One (easy to see) reason for this is that no n-random set for n > 1
can be ∆0

2, or even contain an infinite ∆0
2 subset.

7.3. Π0
1 Classes and Measure. Given the measure-theoretic definition of 1-randomness,

it is natural to ask about the measure of Π0
1 classes containing 1-randoms. The fol-

lowing theorem gives a full answer to this question.

Theorem 7.4. Let C be a Π0
1 class.

(i) If µ(C) = 0, then C contains no 1-random sets.
(ii) If µ(C) > 0, then every 1-random set computes a member of C.

Proof. (i). Suppose C has measure 0. Let T ⊆ 2<ω be a tree such that C = [T ],
and for each n ∈ ω, let Sn = [[{σ ∈ T : |σ| = n}]]. Then S0, S1, . . . is a nested
sequence of open classes whose intersection is the measure 0 class C, so it must
be that µ(Sn) → 0. As the sequence (Sn) is given by a strong array of finite sets
of strings, the map n 7→ µ(Sn) ∈ Q is computable, so we can find a computable
function p such that µ(Sp(n)) ≤ 2−n for all n. Now since S0, S1, . . . is uniformly Σ0

1,
Sp(0), Sp(1), . . . is a Martin-Löf test. But for all f ∈ C, f ∈

⋂
n∈ω Sp(n), so f is not

1-random.

(ii). Suppose C has positive measure and let X be a 1-random set. Let V0 be
a prefix-free c.e. subset of 2<ω such that C = [[V0]]. For each n ∈ ω, let Vn+1 =
[[{σ̂τ : σ ∈ Vn & τ ∈ V0}, and let Sn = [[Vn]]. Notice that for all n, Vn is
prefix-free since V0 is, so we have

µ(Sn+1) =
∑
σ∈Vn+1

2−|σ|

=
∑
σ∈Vn

∑
τ∈V0

2−|στ |

=
∑
σ∈Vn

2−|σ|
∑
τ∈V0

2−|τ |

= µ(Sn)µ(S0).

It follows that µ(Sn) = µ(S0)n+1 = µ(C)n+1, and hence that µ(Sn) → 0 since
µ(C) = 1 − µ(C) < 1. Since S0, S1, . . . is uniformly Σ0

1, and the measures µ(Sn)
converge to zero faster than the (computable) function p(n) = qn, where q > µ(S0)
is rational, there is some subsequence of the sequence (Sn) which is a Martin-Löf

8This should not be confused with saying that Corollary 7.3 does not relativize, which it does:

for each n > 1, there is a Π0,0n−1

1 class all of whose members are n-random.
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test. Since X is 1-random, it is not in the intersection of this test, so X /∈ Sn for
some least n. If n = 0, then X /∈ C and hence X ∈ C. If n > 0, since X ∈ Sn−1,
we can choose σ ∈ Vn−1 such that σ ≺ X. Since no τ ∈ V0 can satisfy σ̂τ ≺ X, it
follows that Y = {x − |σ| : x ∈ X & x ≥ |σ|} /∈ S0 as X = σ̂Y . Thus, Y ∈ C,
which, since Y ≡T X, completes the proof. �

We saw in Section 6 that the PA degrees are precisely those which, for every
nonempty Π0

1 class, bound the degree of a member of that class. Part (ii) of the
preceding theorem can be seen as saying that the degrees of 1-random sets are
precisely the analogs of PA degrees with respect to Π0

1 classes of positive measure.
This is a surprising fact because, in most other settings, the PA degrees and de-
grees of 1-random sets behave very differently. The following result, whose proof
is not difficult but would nonetheless take us too far astray, is an example of this
phenomenon.

Theorem 7.5. If a set X is both 1-random and of PA degree, then X ≥T ∅′.

7.4. Randomness and Computable Domination. We conclude by looking at
applications of some of the ideas from Section 5 to two other notions studied in the
area of algorithmic randomness. We begin with the following.

Definition 7.6. A set X is c.e. traceable if there is a computable function p such
that, for each f ≤T X, there is a computable function h with |Wh(n)| ≤ p(n) and
f(n) ∈Wh(n) for all n. If this holds with Dh(n) in place of Wh(n), then X is called
computably traceable.

Clearly, every computably traceable set is c.e. traceable, and it can be shown,
though we do not do so here, that this implication is strict (see Downey and
Hirschfeldt [2010]). On the other hand, the following theorem shows that the
implication reverse if we restrict to sets of computably dominated degree.

Theorem 7.7 (Kjos-Hanssen, Nies, and Stephan, 2005). If X is a set of computably
dominated degree, then X is c.e. traceable if and only if it is computably traceable.

Proof. Let X be a c.e. traceable set of computably dominated degree, and let p
be as in Definition 7.8 (ii). Given f ≤T X, let h0 be a computable function with
|Wh0(n)| ≤ p(n) and f(n) ∈Wh0(n) for all n. Define a function g by

g(n) = (µs)[ f(n) ∈Wh0(n),s ],

so that g is total and X-computable. By Theorem 5.8 (ii), there exists a computable
function h1 with h1(n) ≥ g(n) for all n. Then if we define h by letting h(n) be the
canonical index of the finite set Wh0(n),h1(n), we have

|Dh(n)| = |Wh0(n),h1(n)| ≤ |Wh0(n)| ≤ p(n)

and f(n) ∈Wh0(n),h1(n) = Dh(n). Hence, X is computably traceable. �

We obtain a similar result by looking at the following notion of randomness due
to Kurtz. In view of Theorem 7.4 (i), it is implied by 1-randomness, and, as above,
it can be shown that this implication is strict.

Definition 7.8. A set X is Kurtz random or weakly 1-random if it is contained in
every Σ0

1 class of measure 1.

Theorem 7.9 (Nies, Stephan, and Terwijn, 2005). If X is a set of computably
dominated degree, then X is 1-random if and only if it is weakly 1-random.
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Proof. Let X be a set of computably dominated degree which is not 1-random. Let
S0, S1, . . . be a Martin-Löf test which X does not pass, and let f be a computable
function such that Sn = [[Wf(n)]] for all n. Define a function g by

g(n) = (µs)(∃σ ≺ X)[ σ ∈Wf(e),s ],

noting that since X ∈ [[Wf(n)]] for all n, g is total and X-computable. By Theorem
5.8 (ii), there exists a computable function h with h(n) ≥ g(n) for all n. Then if
we let

C =
⋂
n∈ω

[[Wf(n),h(n)]],

we have that C is a Π0
1 class with X ∈ C and

µ(C) ≤ µ([[Wf(n),h(n)]]) ≤ µ(Sn) = 2−n

for all n. Hence, C is a Σ0
1 class of measure 1 not containing X, so X is not weakly

1-random. �

In fact, it follows by a result of Kurtz (unpublished; see Downey and Hirschfeldt
[2010]) that every hyperimmune degree contains a set which is weakly 1-random
but not 1-random (or even Schnorr random, which is a much weaker notion of
randomness). Thus, the degrees separating these randomness notions are precisely
the hyperimmune degrees.
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