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Part One: Background



The computability-theoretic perspective

We are interested in statements of the form

∀X [Φ(X)→ ∃YΨ(X, Y)],

where Φ andΨ are some kind of properties of X and Y.

We think of this as a problem, “given X satisfying Φ, find Y satisfyingΨ”.

We call the X such that Φ(X) holds the instances of the problem,
and the Y such thatΨ(X, Y) holds the solutions to X for this problem.

Typically, we look at problems whose instances and solutions are subsets of N,
and where the properties Φ andΨ are arithmetical.

Question. Given an instance of a problem, how complex are its solutions?



The proof-theoretic perspective

Reverse mathematics is motivated by a foundational question:

Question. Which axioms do we really need to prove a given theorem?

The question leads to the idea of the strength of a theorem. Which theorems
does it imply? Which imply it? Which is it equivalent to?

Example. Over ZF, the axiom of choice is equivalent to Zorn’s lemma.

Set theory is too strong to calibrate the strength of “ordinary theorems”.

We would like results of the form

Over the theory T, theorem P implies/is equivalent to theorem Q,

where T is weak enough to not prove everything, yet robust enough to
accommodate a decent amount of basic coding and representation.



Subsystems of second-order arithmetic

Second-order arithmetic, Z2, is a two-sorted theory with variables for numbers
and sets of numbers, and the usual symbols of arithmetic.

The axioms of Z2 are those of Peano arithmetic, and the comprehension
scheme: if φ is a formula (with set parameters) then {x ∈ N : φ(x)} exists.

We restrict which formulas φ we allow to obtain various subsystems:

RCA0 ∆0
1 formulas (definitions of computable sets).

WKL0 Formulas defining paths through infinite binary trees.

ACA0 Arithmetical formulas.

ATR0 Arithmetical formulas iterated along ctbl well orders.

Π1
1CA Π1

1/Σ
1
1 formulas.



Subsystems of second-order arithmetic
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Measuring complexity

Computability theory:
▶ Does every instance compute a solution to itself?

▶ Does every instance have an arithmetically-definable solution?

▶ Is there a computable instance all of whose solutions compute ∅′?

Reverse mathematics/proof theory:
▶ We look at subsystems of second-order arithmetic, RCA0, WKL, ACA0, ...

▶ Is the theorem provable in RCA0?

▶ Is the theorem provable in ACA0?

▶ Does the theorem imply ACA over RCA0?

There is well-understood interplay between these viewpoints.



Semantics

A modelM of Z2 is a pair (N,S), where N is a possibly nonstandard version of
ω, and S ⊆ P(N).

When N = ω,M is called an ω-model, and can be identified with S .

Models of subsystems of Z2 correspond to closure points under natural
computability-theoretic operations.

RCA0 ω-models closed under ≤T and ⊕ (disjoint union).

WKL0 ω-models closed under existence of completions of PA

ACA0 ω-models closed under the jump operator, A 7→ A′.



Classical reverse mathematics

Most (countable) classical mathematics can be developed within Z2.

Initial focus was on classifying theorems in terms of the “big five”.

Theorem. The following are provable in RCA0.

▶ (Simpson). Baire category theorem, intermediate value theorem.

▶ (Brown; Simpson). Urysohn’s lemma, Tietze extension theorem.

▶ (Rabin). Existence of algebraic closures of countable fields.

Theorem. The following are equivalent to WKL0 over RCA0.

▶ (Brown; Friedman). Heine-Borel theorem for [0, 1].

▶ (Orevkov; Shoji and Tanaka). Brouwer fixed-point theorem.

▶ (Friedman, Simpson, and Smith). Prime ideal theorem.



Classical reverse mathematics

Theorem. The following are equivalent to ACA0 over RCA0.

▶ (Friedman). Bolzano-Weierstrass theorem.

▶ (Dekker). Existence of bases in vector spaces.

▶ (Friedman, Simpson, and Smith). Maximal ideal theorem.

Theorem. The following are equivalent to ATR0 over RCA0.

▶ (Steel; Friedman and Hirst). Comparability of well-orderings.

▶ (Simpson) Lusin’s separation theorem.

▶ (Steel; Simpson) Open/clopen determinacy for ωω.

Theorem. The following are equivalent to Π1
n-CA0 over RCA0.

▶ (Dzhafarov and Mummert.) Teichmüller-Tukey lemma for Σ1
n formulas.



The big five phenomenon

Themes of R. M. (continued):

We develop a table indicating which mathe-
matical theorems can be proved in which sub-
systems of Z2.

RCA0 WKL0 ACA0 ATR0 Π1
1-CA0

analysis (separable):

differential equations X X

continuous functions X, X X, X X

completeness, etc. X X X

Banach spaces X X, X X

open and closed sets X X X, X X

Borel and analytic sets X X, X X, X

algebra (countable):

countable fields X X, X X

commutative rings X X X

vector spaces X X

Abelian groups X X X X

miscellaneous:

mathematical logic X X

countable ordinals X X X, X

infinite matchings X X X

the Ramsey property X X X

infinite games X X X

15

From The Gödel Hierarchy and Reverse Mathematics, by Stephen Simpson.



Irregular theorems

Natural question: What are the exceptions to this classification?

[X]n = set of all 〈x0, . . . , xn−1〉 ∈ Xn with x0 < · · · < xn−1.

RTnk . For every coloring c : [ω]2 → 2, there exists an infinite
RTnk . homogeneous set for c.

Theorem. RT22 is “irregular”, but RT32 is not.
▶ (Specker). RCA0 proves RTn2 if and only if n = 1.

▶ (Jockusch). For n ≥ 3, RTnk ↔ ACA0 over RCA0.
▶ (Jockusch). For WKL0 does not prove RT22.

▶ (Seetapun). RT22 6→ ACA0 over RCA0.

▶ (Liu). RT22 6→ WKL0 over RCA0.



Ramsey’s theorem
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The reverse mathematics zoo
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Part Two: Combinatorics and Beyond



Combinatorics below RT2

▶ Chain/antichain principle. Every partial ordering of N contains
▶ an infinite chain or an infinite antichain.

▶ Ascending/descending sequence principle. Every linear ordering of N
▶ contains an infinite ascending or an infinite descending sequence.

▶ Erdős-Moser theorem. Every tournament on N has an infinite
▶ transitive subtournament.

▶ Rainbow Ramsey’s theorem. For all n, k ≥ 1 and f : [N]n → N such that
▶ |f−1(n)| < k for all n there is an infinite R ⊆ N such that f is injective on [R]n.

▶ Hindman’s theorem. For all k ≥ 1 and f : N→ k there is an infinite I ⊆ N
▶ and an i < k such that f(

∑
F) = i for all non-empty finite F ⊆ I.



Combinatorics below RT2
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The atomic model theorem

A first-order atomic theory is one containing a formula that decides every
other formula; an atomic model is one that is as small as possible.

AMT. Every atomic theory has an atomic model.

There are two variants, OPT and AST, which are special cases of AMT.

Theorem (Hirschfeldt, Shore, and Slaman.)

▶ AMT is not provable in RCA0, but it is extremely weak: it is implied
▶ over RCA0 by virtually every combinatorial principle below RT2k .

▶ OPT is equivalent to the existence of hyperimmune sets, i.e., it can be
▶ characterized in terms of growth rates of computable functions.

▶ AST is equivalent to the existence of noncomputable sets.



The atomic model theorem
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Intersection principles

A family of sets is said to have the finite intersection property (f.i.p.)
if the intersection of any finitely many of its members is non-empty.

FIP. Every family of sets has a maximal subfamily with f.i.p.

NIP. Every family of sets has a maximal pairwise disjoint subfamily.

Over ZF, these principles are equivalent to choice (and so to each other).

Theorem (Dzhafarov and Mummert).

▶ Over RCA0, NIP is equivalent to ACA0.

▶ Over RCA0, AMT implies FIP, which implies OPT, both strictly.

Theorem (Cholak, Downey, Igusa). FIP↔ existence of a Cohen generic.



Intersection principles
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Milliken’s tree theorem

For a tree T, Sα(T) is the class of all strong subtrees of T of height α ≤ ω.

Milliken’s tree theorem. Let T be an infinite tree with no leaves. For all n, k ≥ 1
and all c : Sn(T)→ k there is a U ∈ Sω(T) such that c is contant on Sn(U).

MTTnk . Milliken’s tree theorem restricted to k-colorings of Sn(T).

▶ Generalizes many combinatorial results, including Ramsey’s theorem.

▶ Inductive proof (on n) using the Halpern-Laüchli theorem.

▶ Every known proof actually proves a stronger, product version, PMTTnk .

Dobrinen (2018). What about the effectivity/reverse math of MTT?



Milliken’s tree theorem

Theorem (Anglès d’Auriac, Cholak, Dzhafarov, Monin, and Patey).

▶ The Halpern-Laüchli theorem is computably true (and uniformly so,
▶ in an arithmetical oracle).

▶ Hence, ACA0 ` PMTTnk , for all n, k.

▶ For all n ≥ 3 and all k ≥ 2, ACA0 ↔ MTTnk ↔ PMTTnk .

▶ PMTT2k does not imply ACA0 over RCA0.

The proof is a forcing construction, utilizing a kind of analogue of (finite)
Ramsey numbers for Milliken’s tree theorem.

Some applications to the study of big Ramsey degrees of various structures.



Milliken’s tree theorem
MTT32
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Part Three: Current Trends and Questions



Stronger measures of strength

Let P and Q be problems.

P is computably reducible to Q, written P ≤c Q, if

▶ every instance X of P computes an instance X̂ of Q,

▶ every Q-solution Ŷ to X̂, together with X, computes
▶ a P-solution Y to X.

So the following diagram commutes:

X
is solved by

��

computes // X̂
is solved by��

Y Ŷ
X-computes

oo

(Dzhafarov ’15; Hirschfeldt and Jockusch ’16).



Stronger measures of strength

Let P and Q be problems.

P is strongly computably reducible to Q, written P ≤sc Q, if

▶ every instance X of P computes an instance X̂ of Q,

▶ every Q-solution Ŷ to X̂, (((((((hhhhhhhtogether with X , computes
▶ a P-solution Y to X.

So the following diagram commutes:

X
is solved by

��

computes // X̂
is solved by��

Y Ŷ
computes

oo

(Dzhafarov ’15; Hirschfeldt and Jockusch ’16).



Stronger measures of strength

Let P and Q be problems.

P is Weihrauch reducible to Q, written P ≤W Q, if

▶ every instance X of P uniformly computes an instance X̂ of Q,

▶ every Q-solution Ŷ to X̂, together with X, uniformly computes
▶ a P-solution Y to X.

So the following diagram commutes:

X
is solved by

��

uniformly computes // X̂
is solved by��

Y Ŷ
uniformly X-computes

oo

(Weihrauch ’92; Brattka; Gherardi and Marcone ’08; DDHMS ’16).



Stronger measures of strength

Let P and Q be problems.

We have the following implications:

P ≤sW Q
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(Q computably entails P, i.e., every ω-model of Q is a model of P)

Usually, if P ≤ω Q then RCA0 ` Q→ P, but not always (induction issues).



Logical/algebraic properties of reductions

Extensive work has been done on the algebraic structure of ≤W and ≤sW.

Brattka and Gherardi ’11; Higuchi and Pauly ’13; Hölzl and Shafer ’15;
Dzhafarov ’19; Brattka and Pauly ’20, others.

Theorem (Brattka and Gherardi).

▶ There exist ops. turning the Weihrauch degrees into a distributive lattice.

▶ The join does not work for ≤sW.

Theorem (Dzhafarov). There exists a join operation for ≤sW. The resulting
lattice is non-distributive.

Theorem (Higuchi and Pauly; Dzhafarov). Every countable distributive lattice
embeds into the (strong) Weihrauch degrees.



Example: Ramsey’s theorem for different colors

Over RCA0, RTnk ↔ RTn2 for all k ≥ 2.

But to prove, say, RT22 → RT23, we seem to need to use RT23 twice.

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer).
For all k ≥ 2, RTn2k ≰W RTnk .

Theorem (Hirschfeld and Jockusch; Brattka and Rakotoniania).
If k > j, then RTnk ≰W RTnj .

Theorem (Patey). If k > j, then RTnk ≰c RTnj .

Each of these results is proved by a somewhat different kind of forcing
construction.



The CJS decomposition

A coloring c : [N]2 → k is stable if there is an i < k such that for every x ∈ N,
c(x, y) = i for all sufficiently large y (i.e., for every x ∈ N, limy c(x, y) = i).

SRT2k . For every stable coloring c : [ω]2 → k, there exists an infinite
SRT2k . homogeneous set for c.

A set L is limit-homogeneous for c if limy c(x, y) is the same for all x ∈ L.

D2
k . For every stable coloring c : [ω]2 → k, there exists an infinite

D2
k . limit-homogeneous set for c.

Theorem (Chong, Lempp, and Yang). SRT22 ↔ D2
2 over RCA0.

Theorem (Dzhafarov). SRT22 ≰W ∀k D2
k and SRT22 ≰sc ∀k D2

k .



The CJS decomposition

Combinatorially:

▶ D2
2 = solving an instance of RT12.

▶ SRT22 = solving an instance of RT12, plus thinning.

COH. For every family X⃗ = 〈X0, X1, . . .〉 there exists an infinite set Y
COH. which is X⃗-cohesive, i.e., for all i either Y ∩ Xi or Y ∩ (ω − Xi) is finite.

▶ COH = solving ω many instances of RT12 in parallel, allowing finite errors.

Theorem (Cholak, Jockusch, Slaman). RT22 ↔ SRT22 + COH over RCA0.

Longstanding problem: Understand the relationship between COH and SRT22.



The CJS decomposition
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The SRT22 versus COH problem

Theorem (Chong, Slaman, Yang ’13). SRT22 6→ COH over RCA0.

Interestingly, the proof uses non-standard methods in an essential way. The
model produces a model of RCA0+ SRT22+¬COH in whichΣ0

2 induction fails.

This set off much work to produce an ω-model separation.

Theorem (Dzhafarov ’15). COH ≰sc ∀k D2
k .

Theorem (Dzhafarov ‘16). COH ≰W ∀k SRT2k and COH ≰sc SRT22.

Theorem (Dzhafarov, Patey, Solomon, Westrick ’17). COH ≰sc ∀k SRT2k .

Theorem (Monin and Patey ’20). COH ≰ω SRT22.



Combinatorial reductions and separations

Often, we are able to prove stronger separations than just ≰c, ≰sc, etc.

Namely, we can often remove the effective relationship between instnces:

X
is solved by

��

((((hhhhcomputes // X̂
is solved by��

Y Ŷ
computes

oo

P is (strongly) omnisciently computably reducible to Q if

▶ for every instance X of P there exists an instance X̂ of Q, such that

▶ every Q-solution Ŷ to X̂, with X (or not) computes a P-solution Y to X.

We write P ≤oc Q or P ≤soc Q.



Combinatorial reductions and separations

Theorem (Dzhafarov, Patey, Solomon, and Westrick).
If k > j, then RT1k ≰soc RT1j .

There is a c : ω → k such that for every stable d : [ω]2 → j there is an i < j and
an infinite homogeneous set Hi computing no infinite homogeneous set for c.

Main elements of proof:

▶ FixM, a countable transitive model of ZFC.

▶ Let c bZ Cohen generic for forcing in k<M.

▶ Given d : ω → j and i < j, letMi be Mathias forcing with conditions (F, I)
▶ such that I ∈ M and F is monochromatic for d with color i.

▶ Let Hi be generic forMi over a modelM′ ⊇ M ∪ {c, d}.

Combinatorial core uses the tree labeling method (Dzhafarov ‘15).



Combinatorial reductions and separations

Observation. COH ≤soc SRT22.

Proof. Fix an instance of COH, X⃗ = (X0, X1, . . .). Define c : [N]2 → 2 by

c(n, b) =


0 if some intersection of X0, . . . , Xn, X0, . . . , Xn

is finite but contains an element x > b.

1 otherwise.

Let H = {n0 < n1 < · · · } be a homogeneous set for s, necessarily of color 1.

We can now compute from H an infinite cohesive set for (X0, X1, . . .).

For example, to see which of X0 ∩ X1, X0 ∩ X1, X0 ∩ X1, or X0 ∩ X1 is infinite,
search for the least x > n1 in one of these intersections. ■



Questions

What if we replace SRT2k by D
2
k?

Observation. For all k, D2
k ≡soc RT1k .

Since RT1k ≰soc RT1j for all k > j, it is also easy to see that COH ≰soc RT1k .

Open question. Is COH ≤oc D2
2? Equivalently, is COH ≤oc RT12?

Turing computations are effectively continuous transformations 2N → 2N.
What if we weaken effectivity to continuity?

Open question. Given X⃗ = (X0, X1, . . .), does there exist c : N→ 2, every
infinite hom. set for which continuously maps onto an infinite X⃗-cohesive set?
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Thank you for your attention!


