Reverse mathematics and computable combinatorics

Damir D. Dzhafarov
Department of Mathematics, University of Connecticut Fulbright Scholar, Charles University

8 November 2021

Part One: Background

The computability-theoretic perspective

We are interested in statements of the form

$$
\forall X[\Phi(X) \rightarrow \exists Y \Psi(X, Y)]
$$

where Φ and Ψ are some kind of properties of X and Y.
We think of this as a problem, "given X satisfying Φ, find Y satisfying Ψ ".
We call the X such that $\Phi(X)$ holds the instances of the problem, and the Y such that $\Psi(X, Y)$ holds the solutions to X for this problem.

Typically, we look at problems whose instances and solutions are subsets of \mathbb{N}, and where the properties Φ and ψ are arithmetical.

Question. Given an instance of a problem, how complex are its solutions?

The proof-theoretic perspective

Reverse mathematics is motivated by a foundational question:
Question. Which axioms do we really need to prove a given theorem?
The question leads to the idea of the strength of a theorem. Which theorems does it imply? Which imply it? Which is it equivalent to?

Example. Over ZF, the axiom of choice is equivalent to Zorn's lemma. Set theory is too strong to calibrate the strength of "ordinary theorems".

We would like results of the form
Over the theory T, theorem P implies/is equivalent to theorem Q, where T is weak enough to not prove everything, yet robust enough to accommodate a decent amount of basic coding and representation.

Subsystems of second-order arithmetic

Second-order arithmetic, Z_{2}, is a two-sorted theory with variables for numbers and sets of numbers, and the usual symbols of arithmetic.

The axioms of Z_{2} are those of Peano arithmetic, and the comprehension scheme: if φ is a formula (with set parameters) then $\{x \in \mathbb{N}: \varphi(x)\}$ exists.

We restrict which formulas φ we allow to obtain various subsystems:

RCA $_{0}$	Δ_{1}^{0} formulas (definitions of computable sets).
$W K L_{0}$	Formulas defining paths through infinite binary trees.
$A^{\prime} A_{0}$	Arithmetical formulas.
$A T R_{0}$	Arithmetical formulas iterated along ctbl well orders.
$\Pi_{1}^{1} C A$	$\Pi_{1}^{1} / \Sigma_{1}^{1}$ formulas.

Subsystems of second-order arithmetic
ZFC
\Downarrow
Z_{2}
\Downarrow
$\Pi_{1}-\mathrm{CA}_{0}$
\Downarrow
ATR
\Downarrow
$A C A_{0}$
\Downarrow
$W K L_{0}$
\Downarrow
$R C A_{0}$

Measuring complexity

Computability theory:

- Does every instance compute a solution to itself?
- Does every instance have an arithmetically-definable solution?
- Is there a computable instance all of whose solutions compute \emptyset^{\prime} ?

Reverse mathematics/proof theory:

- We look at subsystems of second-order arithmetic, RCA, WKL, ACA $_{0}, \ldots$
- Is the theorem provable in RCA ${ }_{0}$?
- Is the theorem provable in ACA_{0} ?
- Does the theorem imply ACA over RCA ?

There is well-understood interplay between these viewpoints.

Semantics

A model M of Z_{2} is a pair $(\mathbb{N}, \mathcal{S})$, where \mathbb{N} is a possibly nonstandard version of ω, and $\mathcal{S} \subseteq \mathcal{P}(\mathbb{N})$.

When $\mathbb{N}=\omega, M$ is called an ω-model, and can be identified with \mathcal{S}.
Models of subsystems of Z_{2} correspond to closure points under natural computability-theoretic operations.

$R C A_{0}$	ω-models closed under \leq_{T} and \oplus (disjoint union).
$W K L_{0}$	ω-models closed under existence of completions of PA
$A C A_{0}$	ω-models closed under the jump operator, $A \mapsto A^{\prime}$.

Classical reverse mathematics

Most (countable) classical mathematics can be developed within Z_{2}. Initial focus was on classifying theorems in terms of the "big five".

Theorem. The following are provable in $R C A_{0}$.

- (Simpson). Baire category theorem, intermediate value theorem.
- (Brown; Simpson). Urysohn's lemma, Tietze extension theorem.
- (Rabin). Existence of algebraic closures of countable fields.

Theorem. The following are equivalent to $W K L_{0}$ over $R C A_{0}$.

- (Brown; Friedman). Heine-Borel theorem for [0, 1].
- (Orevkov; Shoji and Tanaka). Brouwer fixed-point theorem.
- (Friedman, Simpson, and Smith). Prime ideal theorem.

Classical reverse mathematics

Theorem. The following are equivalent to $A C A_{0}$ over $R C A_{0}$.

- (Friedman). Bolzano-Weierstrass theorem.
- (Dekker). Existence of bases in vector spaces.
- (Friedman, Simpson, and Smith). Maximal ideal theorem.

Theorem. The following are equivalent to $A T R_{0}$ over RCA_{0}.

- (Steel; Friedman and Hirst). Comparability of well-orderings.
- (Simpson) Lusin's separation theorem.
- (Steel; Simpson) Open/clopen determinacy for ω^{ω}.

Theorem. The following are equivalent to Π_{n}^{1}-CA over $R C A_{0}$.

- (Dzhafarov and Mummert.) Teichmüller-Tukey lemma for Σ_{n}^{1} formulas.

The big five phenomenon

	RCA_{0}	WKLL_{0}	ACA_{0}	ATR_{0}	$\Pi_{1}^{1}-\mathrm{CA}_{0}$
analysis (separable):					
\quad differential equations	\times	\times			
continuous functions	\times, \times	\times, \times	\times		
completeness, etc.	\times	\times	\times		
Banach spaces	\times	\times, \times			\times
open and closed sets	\times	\times		\times, \times	\times
Borel and analytic sets	\times			\times, \times	\times, \times
algebra (countable):					
\quad countable fields	\times	\times, \times	\times		
commutative rings	\times	\times	\times		
vector spaces	\times		\times		
Abelian groups	\times		\times	\times	\times
miscellaneous:					
mathematical logic	\times	\times			
countable ordinals	\times		\times	\times, \times	
infinite matchings		\times	\times	\times	
the Ramsey property			\times	\times	\times
infinite games			\times	\times	\times

From The Gödel Hierarchy and Reverse Mathematics, by Stephen Simpson.

Irregular theorems

Natural question: What are the exceptions to this classification?
$[X]^{n}=$ set of all $\left\langle x_{0}, \ldots, x_{n-1}\right\rangle \in X^{n}$ with $x_{0}<\cdots<x_{n-1}$.
$R T_{k}^{n}$. For every coloring $c:[\omega]^{2} \rightarrow 2$, there exists an infinite homogeneous set for c.

Theorem. RT_{2}^{2} is "irregular", but RT_{2}^{3} is not.

- (Specker). RCA 0_{0} proves RT_{2}^{n} if and only if $n=1$.
- (Jockusch). For $n \geq 3, \mathrm{RT}_{k}^{n} \leftrightarrow A C A_{0}$ over $R C A_{0}$.

For $W K L_{0}$ does not prove $R T_{2}^{2}$.

- (Seetapun). $\mathrm{RT}_{2}^{2} \nrightarrow \mathrm{ACA}_{0}$ over RCA .
- (Liu). $\mathrm{RT}_{2}^{2} \nrightarrow \mathrm{WKL} L_{0}$ over RCA_{0}.

Ramsey's theorem

The reverse mathematics zoo

Part Two: Combinatorics and Beyond

Combinatorics below RT^{2}

- Chain/antichain principle. Every partial ordering of \mathbb{N} contains an infinite chain or an infinite antichain.
- Ascending/descending sequence principle. Every linear ordering of \mathbb{N} contains an infinite ascending or an infinite descending sequence.
- Erdős-Moser theorem. Every tournament on \mathbb{N} has an infinite transitive subtournament.
- Rainbow Ramsey's theorem. For all $n, k \geq 1$ and $f:[\mathbb{N}]^{n} \rightarrow \mathbb{N}$ such that $\left|f^{-1}(n)\right|<k$ for all n there is an infinite $R \subseteq \mathbb{N}$ such that f is injective on $[R]^{n}$.
- Hindman's theorem. For all $k \geq 1$ and $f: \mathbb{N} \rightarrow k$ there is an infinite $I \subseteq \mathbb{N}$ and an $i<k$ such that $f\left(\sum F\right)=i$ for all non-empty finite $F \subseteq I$.

Combinatorics below RT^{2}

The atomic model theorem

A first-order atomic theory is one containing a formula that decides every other formula; an atomic model is one that is as small as possible.

AMT. Every atomic theory has an atomic model.

There are two variants, OPT and AST, which are special cases of AMT.
Theorem (Hirschfeldt, Shore, and Slaman.)

- AMT is not provable in $R C A_{0}$, but it is extremely weak: it is implied over RCA 0 by virtually every combinatorial principle below $R T_{k}^{2}$.
- OPT is equivalent to the existence of hyperimmune sets, i.e., it can be characterized in terms of growth rates of computable functions.
- AST is equivalent to the existence of noncomputable sets.

The atomic model theorem

Intersection principles

A family of sets is said to have the finite intersection property (f.i.p.) if the intersection of any finitely many of its members is non-empty.

FIP. Every family of sets has a maximal subfamily with f.i.p.
NIP. Every family of sets has a maximal pairwise disjoint subfamily.

Over ZF, these principles are equivalent to choice (and so to each other).

Theorem (Dzhafarov and Mummert).

- Over RCA ${ }_{0}$, NIP is equivalent to ACA $_{0}$.
- Over RCA ${ }_{0}$, AMT implies FIP, which implies OPT, both strictly.

Theorem (Cholak, Downey, Igusa). FIP \leftrightarrow existence of a Cohen generic.

Intersection principles

Milliken's tree theorem

For a tree $T, \mathcal{S}_{\alpha}(T)$ is the class of all strong subtrees of T of height $\alpha \leq \omega$.
Milliken's tree theorem. Let T be an infinite tree with no leaves. For all $n, k \geq 1$ and all $c: \mathcal{S}_{n}(T) \rightarrow k$ there is a $U \in \mathcal{S}_{\omega}(T)$ such that c is contant on $\mathcal{S}_{n}(U)$.

MTT $_{k}^{n}$. Milliken's tree theorem restricted to k-colorings of $\mathcal{S}_{n}(T)$.

- Generalizes many combinatorial results, including Ramsey's theorem.
- Inductive proof (on n) using the Halpern-Laüchli theorem.
- Every known proof actually proves a stronger, product version, PMTT_{k}^{n}.

Dobrinen (2018). What about the effectivity/reverse math of MTT?

Milliken's tree theorem

Theorem (Anglès d'Auriac, Cholak, Dzhafarov, Monin, and Patey).

- The Halpern-Laüchli theorem is computably true (and uniformly so, in an arithmetical oracle).

Hence, $\mathrm{ACA}_{0} \vdash \mathrm{PMTT}_{\mathrm{k}}$, for all n, k.

- For all $n \geq 3$ and all $k \geq 2$, ACA $_{0} \leftrightarrow \mathrm{MTT}_{k}^{n} \leftrightarrow \mathrm{PMTT}_{k}^{n}$.
- PMTT_{k}^{2} does not imply ACA_{0} over RCA_{0}.

The proof is a forcing construction, utilizing a kind of analogue of (finite) Ramsey numbers for Milliken's tree theorem.

Some applications to the study of big Ramsey degrees of various structures.

Milliken's tree theorem

Part Three: Current Trends and Questions

Stronger measures of strength

Let P and Q be problems.
P is computably reducible to Q , written $\mathrm{P} \leq_{c} \mathrm{Q}$, if

- every instance X of P computes an instance \widehat{X} of Q,
- every Q -solution \widehat{Y} to \widehat{X}, together with X, computes a P -solution Y to X .

So the following diagram commutes:

(Dzhafarov '15; Hirschfeldt and Jockusch '16).

Stronger measures of strength

Let P and Q be problems.
P is strongly computably reducible to Q , written $\mathrm{P} \leq_{s c} \mathrm{Q}$, if

- every instance X of P computes an instance \widehat{X} of Q,
- every Q-solution \widehat{Y} to \widehat{X}, togethwith X, computes a P -solution Y to X .

So the following diagram commutes:

(Dzhafarov '15; Hirschfeldt and Jockusch '16).

Stronger measures of strength

Let P and Q be problems.
P is Weihrauch reducible to Q , written $\mathrm{P} \leq_{w} \mathrm{Q}$, if

- every instance X of P uniformly computes an instance \widehat{X} of Q,
- every Q-solution \widehat{Y} to \widehat{X}, together with X, uniformly computes a P-solution Y to X.

So the following diagram commutes:

(Weihrauch '92; Brattka; Gherardi and Marcone '08; DDHMS '16).

Stronger measures of strength

Let P and Q be problems.

We have the following implications:

(Q computably entails P , i.e., every ω-model of Q is a model of P)
Usually, if $\mathrm{P} \leq{ }_{\omega} \mathrm{Q}$ then $\mathrm{RCA}_{0} \vdash \mathrm{Q} \rightarrow \mathrm{P}$, but not always (induction issues).

Logical/algebraic properties of reductions

Extensive work has been done on the algebraic structure of \leq_{w} and $\leq_{s w}$.
Brattka and Gherardi '11; Higuchi and Pauly '13; Hölzl and Shafer '15; Dzhafarov '19; Brattka and Pauly '20, others.

Theorem (Brattka and Gherardi).

- There exist ops. turning the Weihrauch degrees into a distributive lattice.
- The join does not work for $\leq_{s w}$.

Theorem (Dzhafarov). There exists a join operation for $\leq_{s w}$. The resulting lattice is non-distributive.

Theorem (Higuchi and Pauly; Dzhafarov). Every countable distributive lattice embeds into the (strong) Weihrauch degrees.

Example: Ramsey's theorem for different colors

Over RCA $A_{0}, \mathrm{RT}_{k}^{n} \leftrightarrow \mathrm{RT}_{2}^{n}$ for all $k \geq 2$.
But to prove, say, $\mathrm{RT}_{2}^{2} \rightarrow \mathrm{RT}_{3}^{2}$, we seem to need to use RT_{3}^{2} twice.
Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer).
For all $k \geq 2, \mathrm{RT}_{2^{k}}^{n} \not \leq w \mathrm{RT}_{k}^{n}$.
Theorem (Hirschfeld and Jockusch; Brattka and Rakotoniania).
If $k>j$, then $R T_{k}^{n} \nexists w R T_{j}^{n}$.
Theorem (Patey). If $k>j$, then $R T_{k}^{n} \not \mathbb{K}_{c} R T_{j}^{n}$.
Each of these results is proved by a somewhat different kind of forcing construction.

The CJS decomposition

A coloring $c:[\mathbb{N}]^{2} \rightarrow k$ is stable if there is an $i<k$ such that for every $x \in \mathbb{N}$, $c(x, y)=i$ for all sufficiently large y (i.e., for every $x \in \mathbb{N}, \lim _{y} c(x, y)=i$).

SRT T_{k}^{2}. For every stable coloring $c:[\omega]^{2} \rightarrow k$, there exists an infinite homogeneous set for c.

A set L is limit-homogeneous for c if $\lim _{y} c(x, y)$ is the same for all $x \in L$.
D_{k}^{2}. For every stable coloring $c:[\omega]^{2} \rightarrow k$, there exists an infinite limit-homogeneous set for c.

Theorem (Chong, Lempp, and Yang). $S R T_{2}^{2} \leftrightarrow D_{2}^{2}$ over $R C A_{0}$.
Theorem (Dzhafarov). $\mathrm{SRT}_{2}^{2} \not \leq w \forall k \mathrm{D}_{k}^{2}$ and $\mathrm{SRT}_{2}^{2} \not \mathbb{\leq s c}_{s c} \forall k \mathrm{D}_{k}^{2}$.

The CJS decomposition

Combinatorially:

- D_{2}^{2} = solving an instance of $\mathrm{RT} T_{2}^{1}$.
- $\mathrm{SRT}_{2}^{2}=$ solving an instance of RT_{2}^{1}, plus thinning.

COH. For every family $\vec{X}=\left\langle X_{0}, X_{1}, \ldots\right\rangle$ there exists an infinite set Y which is \vec{X}-cohesive, i.e., for all i either $Y \cap X_{i}$ or $Y \cap\left(\omega-X_{i}\right)$ is finite.

- $\mathrm{COH}=$ solving ω many instances of RT_{2}^{1} in parallel, allowing finite errors.

Theorem (Cholak, Jockusch, Slaman). $\mathrm{RT}_{2}^{2} \leftrightarrow \mathrm{SRT}_{2}^{2}+\mathrm{COH}$ over RCA_{0}.
Longstanding problem: Understand the relationship between COH and SRT_{2}^{2}.

The CJS decomposition

The SRT_{2}^{2} versus COH problem

Theorem (Chong, Slaman, Yang '13). $\mathrm{SRT}_{2}^{2} \nrightarrow \mathrm{COH}$ over RCA R_{0}.

Interestingly, the proof uses non-standard methods in an essential way. The model produces a model of $\mathrm{RCA}_{0}+\mathrm{SRT}_{2}^{2}+\neg \mathrm{COH}$ in which Σ_{2}^{0} induction fails.

This set off much work to produce an ω-model separation.
Theorem (Dzhafarov '15). $\mathrm{COH} \not \not_{s c} \forall k D_{k}^{2}$.
Theorem (Dzhafarov '16). $\mathrm{COH} \not \leq w \forall k \mathrm{SRT}_{k}^{2}$ and $\mathrm{COH} \not \mathbb{L s c}_{s \mathrm{SR}}^{2}{ }_{2}^{2}$.
Theorem (Dzhafarov, Patey, Solomon, Westrick '17). $\mathrm{COH} \not \AA_{\mathrm{sc}} \forall k \mathrm{SRT}_{k}^{2}$.
Theorem (Monin and Patey '20). $\mathrm{COH} \not\left\lfloor_{\omega} \mathrm{SRT}_{2}^{2}\right.$.

Combinatorial reductions and separations

Often, we are able to prove stronger separations than just $\not_{\mathrm{c}}, \not_{\mathrm{sc}}$, etc.
Namely, we can often remove the effective relationship between instnces:

P is (strongly) omnisciently computably reducible to Q if

- for every instance X of P there exists an instance \widehat{X} of Q, such that
- every Q-solution \widehat{Y} to \widehat{X}, with X (or not) computes a P -solution Y to X. We write $\mathrm{P} \leq_{o c} \mathrm{Q}$ or $\mathrm{P} \leq_{s o c} \mathrm{Q}$.

Combinatorial reductions and separations

Theorem (Dzhafarov, Patey, Solomon, and Westrick). If $k>j$, then $R T_{k}^{1} \not Z_{\text {soc }} R T_{j}^{1}$.
There is a $c: \omega \rightarrow k$ such that for every stable $d:[\omega]^{2} \rightarrow j$ there is an $i<j$ and an infinite homogeneous set H_{i} computing no infinite homogeneous set for c.

Main elements of proof:

- Fix M, a countable transitive model of ZFC.
- Let c bZ Cohen generic for forcing in $k^{<M}$.
- Given $d: \omega \rightarrow j$ and $i<j$, let \mathbb{M}_{i} be Mathias forcing with conditions (F, I) such that $I \in M$ and F is monochromatic for d with color i.
- Let H_{i} be generic for \mathbb{M}_{i} over a model $M^{\prime} \supseteq M \cup\{c, d\}$.

Combinatorial core uses the tree labeling method (Dzhafarov '15).

Combinatorial reductions and separations

Observation. $\mathrm{COH} \leq_{\mathrm{soc}} \mathrm{SRT}_{2}^{2}$.
Proof. Fix an instance of $\mathrm{COH}, \vec{X}=\left(X_{0}, X_{1}, \ldots\right)$. Define $c:[\mathbb{N}]^{2} \rightarrow 2$ by

$$
c(n, b)= \begin{cases}0 & \text { if some intersection of } X_{0}, \ldots, X_{n}, \overline{X_{0}}, \ldots, \overline{X_{n}} \\ \text { is finite but contains an element } x>b . \\ 1 & \text { otherwise }\end{cases}
$$

Let $H=\left\{n_{0}<n_{1}<\cdots\right\}$ be a homogeneous set for s, necessarily of color 1 .
We can now compute from H an infinite cohesive set for $\left(X_{0}, X_{1}, \ldots\right)$.
For example, to see which of $X_{0} \cap X_{1}, \overline{X_{0}} \cap X_{1}, X_{0} \cap \overline{X_{1}}$, or $\overline{X_{0}} \cap \overline{X_{1}}$ is infinite, search for the least $x>n_{1}$ in one of these intersections.

Questions

What if we replace $S R T_{k}^{2}$ by D_{k}^{2} ?
Observation. For all $k, \mathrm{D}_{k}^{2} \equiv_{\text {soc }} \mathrm{RT} T_{k}^{1}$.
Since $R T_{k}^{1} \not Z_{\text {soc }} R T_{j}^{1}$ for all $k>j$, it is also easy to see that $\mathrm{COH} \not \leq_{\text {soc }} R T_{k}^{1}$.
Open question. Is $\mathrm{COH} \leq_{o c} \mathrm{D}_{2}^{2}$? Equivalently, is $\mathrm{COH} \leq_{o c} \mathrm{RT}_{2}^{1}$?

Turing computations are effectively continuous transformations $2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$. What if we weaken effectivity to continuity?

Open question. Given $\vec{X}=\left(X_{0}, X_{1}, \ldots\right)$, does there exist $c: \mathbb{N} \rightarrow 2$, every infinite hom. set for which continuously maps onto an infinite \vec{X}-cohesive set?

References

- Dzhafarov and Patey, "Coloring trees in reverse math", Adv. Math. (2017).
- Dzhafarov, Patey, Solomon, and Westrick, "Ramsey's theorem for singletons and strong computable reducibility", Proc. AMS (2017).
- Dzhafarov, "Strong reductions between comb. principles", JSL (2016).
- Dorais, Dzhafarov, Hirst, Mileti, Sahfer, "On uniform relationships between combinatorial problems" Trans. AMS (2016).
- Dzhafarov, "Cohesive avoidance and strong reductions", Proc. AMS (2015).
- Dzhafarov and Mummert, Reverse Mathematics, Springer (to appear).

Thank you for your attention!

