Strong computable reducibility

Damir D. Dzhafarov
University of Connecticut

September 21, 2015
A problem is a Π^1_2 statement of second-order arithmetic, thought of as

$$\text{for every } X \in \text{Inst}(P), \text{ there is a } Y \in \text{Soln}(P, X),$$

where $\text{Inst}(P)$ and $\text{Soln}(P, X)$ are arithmetically-definable sets.

Examples.

RT_k^n. Every coloring $c : [\omega]^n \to k$ has an infinite homogeneous set.

COH. For every family $\vec{c} = \langle c_0, c_1, \ldots \rangle$ of colorings $c_i : \omega \to 2$ there is an infinite set H that is almost homogeneous for each c_i, i.e., if for each i there is a finite set F such that $H - F$ is homogeneous for c_i.
Let P and Q be problems.

P is strongly computably reducible to Q, written $P \leq_{sc} Q$, if every $X \in \text{Inst}(P)$ computes an $\hat{X} \in \text{Inst}(Q)$, such that every $\hat{Y} \in \text{Soln}(Q, \hat{X})$ computes a $Y \in \text{Soln}(P, X)$.

![Diagram showing the relationship between X, \hat{X}, Y, and \hat{Y} with arrows indicating computations and solutions.]
Let P and Q be problems.

P is **computably reducible** to Q, written $P \leq_c Q$, if every $X \in \text{Inst}(P)$ computes an $\hat{X} \in \text{Inst}(Q)$, such that every $\hat{Y} \in \text{Soln}(Q, \hat{X})$, together with X, computes a $Y \in \text{Soln}(P, X)$.
As a finer metric.

Most implications between problems are formalizations of (strong) computable or (strong) Weihrauch reductions.

Theorem (Cholak, Jockusch, and Slaman). $\text{RCA}_0 \vdash \text{RT}_2 \rightarrow \text{COH}$.

The proof is a formalization in RCA_0 that $\text{COH} \leq_s \text{RT}_2$.

We can tease apart subtle differences that RCA_0 alone does not see.

For all j and k, we have $\text{RCA}_0 \vdash \text{RT}_j^n \leftrightarrow \text{RT}_k^n$.

Theorem (Dorais, Dzhafarov, Hirst, Mileti, Shafer). If $j > k$, then $\text{RT}_j^n \not\leq_s \text{RT}_k^n$.

Theorem (Hirschfeldt and Jockusch). If $j > k$, then $\text{RT}_j^n \not\leq_W \text{RT}_k^n$.

Theorem (Patey). If $j > k$, then $\text{RT}_j^n \not\leq_c \text{RT}_k^n$.
Two versions of Ramsey's theorem.

A coloring \(c : [\omega]^2 \to 2 \) is stable if \(\lim_y c(x, y) \) exists for all \(x \).

\(\text{SRT}_2^2 \). Every stable coloring has an infinite homogeneous set.

Theorem (Cholak, Jockusch, and Slaman). \(\text{RT}_2^2 \equiv_{SW} \text{SRT}_2^2 \cdot \text{COH} \).

A set \(L \) is limit-homogeneous for a stable coloring \(c \) if there is an \(i \in \{0, 1\} \) such that \(\lim_y c(x, y) = i \) for all \(x \in L \).

\(\text{D}_2^2 \). Every stable coloring has an infinite limit-homogeneous set.

Observation. \(\text{SRT}_2^2 \equiv_c \text{D}_2^2 \).

Pf. Thin out a limit-homogeneous set to a homogeneous one.

Theorem (Chong, Lempp, and Yang). \(\text{RCA}_0 \vdash \text{SRT}_2^2 \iff \text{D}_2^2 \).
Two versions of Ramsey's theorem.

Theorem (Hirschfeldt and Jockusch). $\text{SRT}_2^2 \leq_W \text{D}^2_2 \bullet \text{D}^2_2$.

Question (Hirschfeldt and Jockusch). Does $\text{SRT}_2^2 \leq_W \text{D}^2_2$? Does $\text{SRT}_2^2 \leq_{sc} \text{D}^2_2$?

If L is limit-homogeneous, but we do not know what color $i \in \{0, 1\}$ the elements in it limit to, then thinning it to a homogeneous set seems difficult.

Theorem (Dzhafarov). $\text{SRT}_2^2 \not\leq_W \text{D}^2_2$.

Theorem (Dzhafarov). There is a stable coloring c such that every other stable coloring d has an infinite limit-homogeneous set L that computes no infinite homogeneous set for c.

Corollary. $\text{SRT}_2^2 \not\leq_{sc} \text{D}^2_2$.
COH and D_2^2.

Open question (Chong, Slaman, and Yang). Does SRT$_2^2$ (or D_2^2) imply COH in ω-models of RCA$_0$? Is COH \leq_c SRT$_2^2$? Equivalently, is COH \leq_c D_2^2?

Theorem (Dzhafarov, 2012). COH $\not\leq_{sc} D_2^2$.

The proof is a computable forcing argument. Any 3-generic yields a family $\langle X_0, X_1, \ldots \rangle$ witnessing the theorem, so we can find one computable in $\emptyset^{(3)}$.

Theorem (Hirschfeldt and Jockusch; Patey). There is a family of sets $X = \langle X_0, X_1, \ldots \rangle$ such that every stable coloring d has an infinite limit-homogeneous set L that computes no infinite X-cohesive set.

The X built by Hirschfeldt and Jockusch is non-hyperarithmetical. Patey's is Δ^0_2.

Question. Given the differences between SRT$_2^2$ and D_2^2 under \leq_W and \leq_{sc}, what relationships hold between COH and SRT$_2^2$?
COH and SRT$_2^2$.

It is possible to elaborate on the proof that COH $\not\preccurlyeq_{W} D_2^2$ to obtain:

Theorem (Dzhafarov). COH $\not\preccurlyeq_{W} SRT_2^2$ (via a computable instance).

Homogeneous sets, unlike limit-homogeneous ones, have internal structure.

E.g., suppose we are building a family of colorings \vec{c} and $\Phi\vec{c}$ is to be stable.

To build a limit-homogeneous set L for $\Phi\vec{c}$, we can build a finite portion F of L, and only later extend \vec{c}, say in a way to diagonalize some computation from F.

By Seetapun's argument, F can be chosen so that its elements' limits agree.

But to build a homogeneous set H for $\Phi\vec{c}$, we cannot delay building \vec{c} in this way because homogeneity of any finite set directly depends on it.
Tree labeling method.

We define a certain subtree of $\omega^{<\omega}$ with labels on its nodes corresponding to diagonalization opportunities.

Paths give trivial wins (e.g., solutions that don't compute infinite sets).

If the tree is well-founded, we can use the labels to guide the construction of a homogeneous set.

Theorem (Dzhafarov). $\text{COH} \not\leq_{\text{sc}} \text{SRT}^2_2$.

The tree labeling method is quite powerful for separating principles under \leq_{sc}.

Theorem (Dzhafarov, Patey, Solomon, Westrick). If $j > k$ then $\text{RT}^1_j \not\leq_{\text{sc}} \text{SRT}^2_k$.

Theorem (Nichols). $\text{SRT}^2_2 \not\leq_{\text{sc}} \text{SPT}^2_2$.
Hyperarithmetic instances.

The tree labeling method involves iteratively taking paths through subtrees of \(\omega^{<\omega} \) so the instances it produces are non-hyperarithmetical.

Open question. Can the tree labeling method be made more effective?

Recall that a set \(X \) has a self-modulus if there is a function \(f \equiv_T X \) such that \(X \leq_T g \) from every function \(g > f \). By a result of Solovay, \(X \) is hyperarithmetical.

Observation. If \(\text{COH} \nless_{sc} \text{SRT}^2 \) via an instance \(\vec{c} = \langle c_0, c_1, \ldots \rangle \) that has a self-modulus, then \(\text{COH} \nless_c \text{SRT}^2 \).

Theorem (Dzhafarov, Patey, Solomon, Westrick). \(\text{COH} \nless_{sc} \text{SRT}^2 \) via an instance \(\vec{c} \) computable in \(\emptyset^{(\omega)} \) (and so at least hyperarithmetic).

Open question. Can the instance \(\vec{c} \) be chosen \(\Delta^0_2 \)?
Thank you.