Reverse mathematics and the game-theoretic framework

Damir D. Dzhafarov
University of Connecticut

October 30, 2020

Joint work with
Denis R. Hirschfeldt and Sarah Reitzes.

Reverse math, in one slide

Reverse mathematics is a foundational program for calibrating the computable and proof-theoretic content of mathematical principles.

Various subsystems of Z_{2} are used as benchmarks against which to test the strength of theorems we are interested in: $R C A_{0}, W K L, A C A_{0}, \ldots$

RCA 0 consists of the algebraic axioms about the natural numbers, plus Δ_{1}^{0}-comprehension and Σ_{1}^{0}-induction.

A model of RCA_{0} is a pair (N, \mathcal{S}), where N is a (possibly nonstandard) first-order structure, and $\mathcal{S} \subseteq \mathcal{P}(N)$ is closed under Δ_{1}^{0}-definability.

An ω-model is a model (N, \mathcal{S}) with $N=\omega$, which can thus be identified just with \mathcal{S}. If $\mathcal{S} \models \mathrm{RCA}_{0}$ then \mathcal{S} is a Turing ideal.

The computability-theoretic perspective

We are interested in statements of the form

$$
\forall X[\Phi(X) \rightarrow \exists Y \Psi(X, Y)]
$$

where Φ and Ψ are some kind of properties of X and Y.
We think of this as a problem, "given X satisfying Φ, find Y satisfying Ψ ".
We call the X such that $\Phi(X)$ holds the instances of the problem, and the Y such that $\Psi(X, Y)$ holds the solutions to X for this problem.

Typically, we look at problems whose instances and solutions are subsets of \mathbb{N}, and where the properties Φ and ψ are arithmetical.

Basic question. Given an instance of a problem, how complex are its solutions?

Measuring complexity

Computability theory:

- Does every instance compute a solution to itself?
- Does every instance have an arithmetically-definable solution?
- Is there a computable instance all of whose solutions compute \emptyset^{\prime} ?

Reverse mathematics/proof theory:

- Is the theorem provable in RCA_{0} ?
- Is the theorem provable in ACA_{0} ?
- Does the theorem imply ACA over RCA_{0} ?

There is well-understood relationship between these viewpoints, somewhat complicated by induction issues.

Other ways to compare problems

Defn. Let P, Q be problems. P is computably reducible to Q, written $P \leq_{c} Q$, if:

- for every P-instance X, there is a Q-instance $Y \leq_{T} X$, such that
- for every solution \widehat{Y} to Y, there is a solution \widehat{X} to X with $\widehat{X} \leq_{T} X \oplus \widehat{Y}$.

First defined by Dzhafarov (2015), but informally used widely in RM literature.

Other ways to compare problems

Defn. Let P, Q be problems. P is Weihrauch reducible to Q, written $P \leq_{w} Q$, if there are Turing functionals Φ, Ψ such that:

- for every P-instance X, we have that $\Phi(X)$ is a Q-instance, and
- for every Q-solution \widehat{Y} to $\Phi(X)$, we have that $\Psi(X \oplus \widehat{Y})$ is a P-solution to X.

Dev'd by Weihrauch (1990), then Gherardi \& Marcone (2008) and Brattka \& Marcone (2011). Ind. by Dorais, Dzhafarov, Hirst, Mileti, and Shafer (2016).

A refinement of reverse math in ω-models

Clearly, if $\mathrm{P} \leq_{w} \mathrm{Q}$ then $\mathrm{P} \leq_{c} \mathrm{Q}$.
If P and Q are Π_{2}^{1} statements and $\mathrm{P} \leq_{c} \mathrm{Q}$, then $\mathrm{Q} \rightarrow \mathrm{P}$ in all ω-models.

Example.

Recall that $R T_{k}^{n}$ is Ramsey's theorem for k-colorings of n-tuples of ω.

- instances: colorings $c:[\omega]^{n} \rightarrow k=\{0,1, \ldots, k-1\}$;
- solutions to such a c: all infinite $H \subseteq \omega$ such that c is constant on $[H]^{n}$.

For each n, it is easy to see that $R C A_{0} \vdash R T_{j}^{n} \leftrightarrow R T_{k}^{n}$ for all j and k.
Thm (Dorais, Dzhafarov, Hirst, Mileti, and Shafer). $R T_{k}^{1} \not Z_{w} R T_{j}^{1}$ for all $j<k$.
Thm (Patey). $\mathrm{RT}_{k}^{n} \not Z_{c} R T_{j}^{n}$ for all $j<k$ and $n \geq 2$.

Hirschfeldt-Jockusch games

Let P and Q be problems. $G(Q \rightarrow P)$ is the following game:

| move | Player 1 | Player 2 |
| :--- | :--- | :--- |$|$| $Y_{1} \leq_{T} X_{0}$ |
| :--- |
| either P-solution to X_{0} or Q-instance |

Player 2 wins if it ever plays a P-solution to X_{0}, or if Player 1 has no valid move.
Player 1 wins otherwise. When either player wins, the game stops.

A game-theoretic characterization

Thm (Hirschfeldt and Jockusch). Let P and Q be problems. If every ω-model of $R C A_{0}+Q$ is a model of P, then Player 2 has a winning strategy for $G(\mathrm{Q} \rightarrow \mathrm{P})$. Otherwise, Player 1 has a winning strategy.

Recall that $\leq_{W} \Longrightarrow \leq_{c} \Longrightarrow$ implication over ω-models.
Note that this also captures computable reducibility: $\mathrm{P} \leq_{c} \mathrm{Q}$ iff Player 2 has a winning strategy for $G(Q \rightarrow P)$ that wins in exactly two moves.

Defn. A strategy for Player 2 is computable if there is a Turing functional Φ such that $Y_{n}=\Phi\left(n, X_{0} \oplus \cdots \oplus X_{n-1}\right)$.

Now $P \leq_{w} Q$ iff Player 2 has a computable winning strategy for $G(Q \rightarrow P)$ that wins in exactly two moves.

Counting moves

Example. Player 2 has a computable winning strategy for $G\left(\mathrm{RT}_{2}^{1} \rightarrow \mathrm{RT}^{1}<\infty\right)$.

- Player 1 plays $c: \omega \rightarrow 3=\{0,1,2\}$.
- Player 2 plays $d_{1}: \omega \rightarrow 2$ defined by $d_{0}(x)$ is 0 if $c(x)=0$ and 1 otherwise.
- Player 1 plays an infinite homogeneous set $H_{1}=\left\{y_{0}<y_{1}<\cdots\right\}$ for d_{1}.
- Player 2 plays $d_{2}: \omega \rightarrow 2$ defined by $d_{1}(x)$ is 0 if $c\left(y_{x}\right)=1$ and 1 otherwise.
- Player 1 plays an infinite homogeneous set H_{2} for d_{2}.
- Player 2 plays $\left\{y_{x} \in H_{1}: x \in H_{2}\right\}$ as an infinite homogeneous set for c.

Thm (Hirschfeldt and Jockusch). There is no n s.t. Player 2 has a computable winning strategy for $G\left(R T_{2}^{1} \rightarrow R T_{<\infty}^{1}\right)$ that wins in $\leq n$ moves.

Compare with: $\mathrm{RCA}_{0} \vdash \mathrm{RT}_{2}^{1}$, but by results of Hirst, $\mathrm{RCA}_{0} \nvdash \mathrm{RT}{ }^{1}<\infty$.

Generalized games

Let P, Q be problems; Γ a set of L_{2} formulas. $G^{\Gamma}(Q \rightarrow P)$ is the game:

move	Player 1	Player 2
1	M - L_{1}-structure X_{0} - P-instance s.t. $M\left[X_{0}\right]$ is consistent with Γ	$Y_{1} \in M\left[X_{0}\right]$ either P-solution to X_{0} or Q-instance
2	X_{1}	$Y_{2} \in M\left[X_{0}, X_{1}\right]$ either P-solution to X_{0} or Q-instance
	Q-solution to Y_{1} s.t. $M\left[X_{0}, X_{1}\right]$	
is consistent with Γ	$Y_{3} \in M\left[X_{0}, X_{1}, X_{2}\right]$ either P-solution to X_{0} or Q-instance	
3	X_{2}	\vdots

Generalized games

Let P, Q be problems; Γ a set of L_{2} formulas. $\widehat{G}^{\Gamma}(Q \rightarrow P)$ is the game:

move	Player 1	Player 2
1	$\begin{aligned} & (M, \mathcal{S}) \models \Gamma \\ & X_{0} \in \mathcal{S} \\ & \mathrm{P} \text {-instance } \end{aligned}$	$\begin{aligned} & Y_{1} \in M\left[X_{0}\right] \\ & \text { either P-solution to } X_{0} \\ & \text { or Q-instance } \end{aligned}$
2	$X_{1} \in \mathcal{S}$ Q-solution to Y_{1}	$Y_{2} \in M\left[x_{0}, x_{1}\right]$ either P-solution to X_{0} or Q-instance
3	$\begin{aligned} & X_{2} \in \mathcal{S} \\ & \text { Q-solution to } Y_{1} \end{aligned}$	$\begin{aligned} & Y_{3} \in M\left[X_{0}, X_{1}, X_{2}\right] \\ & \text { either } P \text {-solution to } X_{0} \end{aligned}$ or Q-instance
\vdots	:	

Characterizing provability

In order of difficulty, from hardest for Player 2, to hardest for Player 1, we have:

- $G^{\ulcorner }(\mathrm{Q} \rightarrow \mathrm{P}) \quad G^{\Gamma+\mathrm{Q}}(\mathrm{Q} \rightarrow \mathrm{P}) \quad \hat{\mathrm{G}}^{\Gamma}(\mathrm{Q} \rightarrow \mathrm{P}) \quad \hat{\mathrm{G}}^{\Gamma+\mathrm{Q}}(\mathrm{Q} \rightarrow \mathrm{P})$

Prop (Dzhafarov, Hirschfeldt, and Reitzes). Let P, Q be problems. Let Γ be a consistent extension of Δ_{1}^{0}-CA by Π_{1}^{1} formulas.

1) If $\Gamma \vdash Q \rightarrow P$, then Player 2 has a winning strategy for $G\ulcorner(Q \rightarrow P)$.
2) Otherwise, Player 1 has a winning strategy for $\hat{G}^{\Gamma+}(Q \rightarrow P)$.

Thm (Dzhafarov, Hirschfeldt, and Reitzes). Let P, Q be problems. Let Γ be a consistent extension of Δ_{1}^{0}-CA by Π_{1}^{1} formulas including a universal Σ_{1}^{0} formula.

1) If $\Gamma \vdash Q \rightarrow P$, there is an $n \in \omega$ such that Player 2 has a winning strategy for $\widehat{G}^{\Gamma}(\mathrm{Q} \rightarrow \mathrm{P})$ that ensures victory in at most n moves.
2) Otherwise, Player 1 has a winning strategy for $\widehat{G}^{\Gamma+Q}(Q \rightarrow P)$.

Applications

Thm (folklore). If $\mathrm{ACA}_{0} \vdash P$ then there is an $n \in \omega$ such that every instance X of P has a solution computable in $X^{(n)}$.

Pf. If $A C A_{0} \vdash P$ then $\mathrm{RCA}_{0} \vdash \mathrm{Q} \rightarrow \mathrm{P}$, where $\mathrm{Q}=(\forall X)\left[X^{\prime}\right.$ exists $]$. Fix n from theorem. Consider the game $\widehat{G}^{\Gamma}(\mathrm{Q} \rightarrow \mathrm{P})$ where on its first move, Player 1 plays the ω-model $\left\{Y: Y \leq_{T} X^{(n)}\right\}$ and the P-instance X.

Note that if the Π_{1}^{1} formulas added to Δ_{1}^{0}-CA to get Γ are true, then a winning strategy for $\widehat{G}^{\Gamma}(Q \rightarrow P)$ yields a winning strategy for $G(Q \rightarrow P)$.

Patey showed there is no bound on Player 2's moves in $G\left(\mathrm{RT}_{2}^{2} \rightarrow \mathrm{RT}^{2}<\infty\right)$.
Cor. $\mathrm{RT}_{k}^{2} \nvdash \mathrm{RT}_{<\infty}^{2}$ even over $\mathrm{RCA}_{0}+$ all true Π_{1}^{1} formulas.
By an old result of Cholak, Jockusch, and Slaman, $R C A_{0} \nvdash \mathrm{RT}_{2}^{2} \rightarrow \mathrm{RT}^{2}<\infty$. The proof exploits a failure of arithmetical induction, a true Π_{1}^{1} statement.

Proof of the main theorem

Lem. For $n \in \omega$, let $\Theta_{n}\left(e_{0}, \ldots, e_{n}, X_{0}, \ldots, X_{n}, Y_{0}, \ldots, Y_{n}\right)$ be the formula if X_{0} is a P-instance then $\left(Y_{0}=\Phi_{e_{0}}^{X_{0}}\right.$ and Y_{0} is a P-solution to X_{0}, or Y_{0} is a Q -instance, and if X_{1} is a Q-solution to Y_{0} then $Y_{1}=\Phi_{e_{1}}^{X_{0} \oplus X_{1}}$ and Y_{1} is a P-solution to X_{0}, or Y_{1} is a Q-instance, and if X_{2} is a Q-solution to Y_{1} then $\left(Y_{2}=\Phi_{e_{2}}^{X_{0} \oplus X_{1} \oplus X_{2}}\right.$ and Y_{2} is a P-solution to X_{0}, or
$\ldots\left(Y_{n}=\Phi_{e_{n}}^{X_{0} \oplus \cdots \oplus X_{n}}\right.$ and Y_{n} is a solution to $\left.\left.\left.X_{0}\right)\right) \cdots\right)$.
Let Δ_{n} be $\forall X_{0} \exists e_{0}, Y_{0} \cdots \forall X_{n} \exists e_{n}, Y_{n} \Theta_{n}\left(e_{0}, \ldots, e_{n}, X_{0}, \ldots, X_{n}, Y_{0}, \ldots, Y_{n}\right)$.
If $\Gamma \vdash \mathrm{Q} \rightarrow \mathrm{P}$ then $\Gamma \vdash \Delta_{n}$ for some $n \in \omega$.

Proof of the main theorem

Suppose $\Gamma \vdash \mathrm{Q} \rightarrow \mathrm{P}$ but $\Gamma \nvdash \Delta_{\mathrm{n}}$ for all n .
Expand L_{2} to L_{2}^{\prime} by adding a function symbol from (strings of) first-order objects to second-order objects.

For each n, there is a model $\mathcal{M}=(M, S) \models \Gamma+\neg \Delta_{n}$. We can expand this to an L_{2}^{\prime}-structure using the failure of Δ_{n} to define $f^{\mathcal{M}}$ as a Skolem function.
\mathcal{M} and $f^{\mathcal{M}}$ then satisfies Γ together with $\Psi_{n}=$ $\forall e_{0}, Y_{0} \cdots \forall e_{n}, Y_{n} \neg \Theta_{n}\left(e_{0}, \ldots, e_{k}, f(\langle \rangle), f\left(\left\langle e_{0}\right\rangle\right), \ldots, f\left(\left\langle e_{0} \cdots e_{n}\right\rangle\right), Y_{0}, \ldots, Y_{n}\right)$.

By compactness, there is a model \mathcal{N} of $\Gamma \cup\left\{\Psi_{1}, \Psi_{2}, \ldots\right\}$.
But now $f^{\mathcal{N}}$ gives a winning strategy for Player 1 in $G^{\Gamma}(Q \rightarrow P)$.

Extensions

We don't know if in our theorem we can replace $\widehat{G}^{\Gamma}(\mathrm{Q} \rightarrow \mathrm{P})$ by $\mathrm{G}^{\Gamma}(\mathrm{Q} \rightarrow \mathrm{P})$. But we can do so for natural cases, where the strategy is definable.

Prop (Dzhafarov, Hirschfeldt, and Reitzes. Let P, Q be problems. Let Γ be a consistent extension of Δ_{1}^{0}-CA by Π_{1}^{1} formulas. TFAE:

1) Player 2 has a computable winning strategy for $\hat{G}^{\Gamma}(Q \rightarrow P)$.
2) Player 2 has a computable winning strategy for $G^{\Gamma}(Q \rightarrow P)$.
3) There is an $n \in \omega$ s.t. Player 2 has a computable winning strategy that wins every run of $\widehat{G}^{\ulcorner }(Q \rightarrow P)$ in at most n moves.
4) There is an $n \in \omega$ s.t. Player 2 has a computable winning strategy that wins every run of $G^{\Gamma}(Q \rightarrow P)$ in at most n moves.

The n's in (3) and (4) are the same.

Variations of $B \Sigma_{2}^{0}$

Fix a class Γ of L_{2}-formulas. Recall the following scheme:
ВГ: $(\forall n)[(\forall x<n)(\exists y) \phi(x, y) \rightarrow(\exists b)(\forall x<n)(\exists y<b) \phi(x, y)]$, where $\phi \in \Gamma$.

A frequently encountered principle in reverse math is $B \Sigma_{2}^{0}$. It's not provable in $R C A_{0}$, but it shows up naturally in many $R M$ arguments. It has many important equivalent formulations.

Thm (Hirst). Over $R C A_{0}, B \Sigma_{2}^{0}$ is equivalent to $\mathrm{RT}^{1}<\infty$.
By our theorem, such equivalences correspond with the existence of winning strategies for Player 2 in the game $\widehat{\mathrm{G}}^{\text {RCA }}$.

Question. When can these strategies be chosen to be computable?

Example: the limit homogeneous problem

Consider the following principle:
LH: For every $\mathrm{c}:[\omega]^{2} \rightarrow 2$ such that $\lim _{y} c(x, y)=1$ for all x, there is an infinite set H such that $c(x, y)=1$ for all $x, y \in H$.

Observation. Over $R C A_{0}, L H$ is equivalent to the bounding principle $B \Sigma_{2}^{0}$.
Pf. (\leftarrow) Assume $B \Sigma_{2}^{0}$. Fix an instance $c:[\omega]^{2} \rightarrow 2$ of LH. There is a Δ_{1}^{0}-definable way to thin \mathbb{N} to a homogeneous set for c . $\mathrm{B} \Sigma_{2}^{0}$ is used to prove that the thinning process is total.
(\rightarrow) We prove $\mathrm{LH} \rightarrow \mathrm{RT}_{<\infty}^{1}$. Fix $d: \omega \rightarrow k$ and assume no homogeneous set for d is infinite. Define $c(x, y)=0$ if $d(x)=d(y)$ and $c(x, y)=1$ otherwise. Then $\lim _{y} c(x, y)=1$ for all x. A homogeneous set for c contradicts d only using k many colors.

Example: the limit homogeneous problem

Prop (Dzhafarov, Hirschfeldt, and Reitzes). Player 2 has no computable winning strategy for $G^{R C A_{0}}\left(\mathrm{RT}_{<\infty}^{1} \rightarrow L H\right)$. This is true even if the number of colors is not provided along with the instance of $R T^{1}<\infty$.

Pf idea. Player 1 begins by playing the standard model of \mathbb{N} along with some initial segment of an instance of LH. Player 2, playing according to a purported computable strategy, responds by starting to define an instance of $\mathrm{RT}^{1}<\infty$.

Player 1 guesses at which color in the coloring will be used infinitely often. Player 2's strategy must defeat all these guesses, which it can only do by increasing the number of colors. This can only happen finitely often.

Once Player 2 settles on a number of colors, Player 1 changes to playing in a 1-elementary extension of the standard model in which the portion of LH can be extended so as to have no definable solution. By 1-elementarity, Player 2's instance of $\mathrm{RT}_{<\infty}^{1}$ must use the same number of colors in both models.

A finer measure of strength

$$
Q \rightarrow P \text { means } P \leq_{W} Q .
$$

A finer measure of strength

$\mathrm{Q} \rightarrow \mathrm{P}$ means Player 2 has a computable winning strategy for $G^{R C A_{0}}(\mathrm{Q} \rightarrow \mathrm{P})$.

Thanks for your attention!

