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Reverse math, in one slide

Reverse mathematics is a foundational program for calibrating the computable
and proof-theoretic content of mathematical principles.

Various subsystems of Z2 are used as benchmarks against which to test the
strength of theorems we are interested in: RCA0, WKL, ACA0, ...

RCA0 consists of the algebraic axioms about the natural numbers, plus
∆01-comprehension and Σ0

1-induction.

A model of RCA0 is a pair (N,S), where N is a (possibly nonstandard)
first-order structure, and S ⊆ P(N) is closed under ∆01-definability.

An ω-model is a model (N,S) with N = ω, which can thus be identified just
with S . If S |= RCA0 then S is a Turing ideal.



The computability-theoretic perspective

We are interested in statements of the form

∀X [Φ(X)→ ∃YΨ(X, Y)],

where Φ andΨ are some kind of properties of X and Y.

We think of this as a problem, “given X satisfying Φ, find Y satisfyingΨ”.

We call the X such that Φ(X) holds the instances of the problem,
and the Y such thatΨ(X, Y) holds the solutions to X for this problem.

Typically, we look at problems whose instances and solutions are subsets of N,
and where the properties Φ andΨ are arithmetical.

Basic question. Given an instance of a problem, how complex are its solutions?



Measuring complexity

Computability theory:

• Does every instance compute a solution to itself?

• Does every instance have an arithmetically-definable solution?

• Is there a computable instance all of whose solutions compute ∅′?

Reverse mathematics/proof theory:

• Is the theorem provable in RCA0?

• Is the theorem provable in ACA0?

• Does the theorem imply ACA over RCA0?

There is well-understood relationship between these viewpoints,
somewhat complicated by induction issues.



Other ways to compare problems

Defn. Let P, Q be problems. P is computably reducible to Q, written P ≤c Q, if:

• for every P-instance X, there is a Q-instance Y ≤T X, such that

• for every solution Ŷ to Y, there is a solution X̂ to X with X̂ ≤T X⊕ Ŷ.

P ≤sc Q:

X Y

Y Ŷ

computes

X-computes

is solved by is solved by

First defined by Dzhafarov (2015), but informally used widely in RM literature.



Other ways to compare problems

Defn. Let P, Q be problems. P is Weihrauch reducible to Q, written P ≤W Q, if
there are Turing functionals Φ,Ψ such that:

• for every P-instance X, we have that Φ(X) is a Q-instance, and

• for every Q-solution Ŷ to Φ(X), we have thatΨ(X⊕ Ŷ) is a P-solution to X.

P ≤sc Q:

X Y

Y Ŷ

Φ

Ψ(X⊕ ·)

is solved by is solved by

Dev’d byWeihrauch (1990), then Gherardi & Marcone (2008) and Brattka &
Marcone (2011). Ind. by Dorais, Dzhafarov, Hirst, Mileti, and Shafer (2016).



A refinement of reverse math in ω-models

Clearly, if P ≤W Q then P ≤c Q.

If P and Q are Π12 statements and P ≤c Q, then Q→ P in all ω-models.

Example.

Recall that RTnk is Ramsey’s theorem for k-colorings of n-tuples of ω.

• instances: colorings c : [ω]n → k = {0, 1, . . . , k− 1};

• solutions to such a c: all infinite H ⊆ ω such that c is constant on [H]n.

For each n, it is easy to see that RCA0 ⊢ RTnj ↔ RTnk for all j and k.

Thm (Dorais, Dzhafarov, Hirst, Mileti, and Shafer). RT1k ≰W RT1j for all j < k.

Thm (Patey). RTnk ≰c RTnj for all j < k and n ≥ 2.



Hirschfeldt-Jockusch games

Let P and Q be problems. G(Q→ P) is the following game:

move Player 1 Player 2
1 X0 Y1 ≤T X0

P-instance either P-solution to X0 or Q-instance
2 X1 Y2 ≤T X0 ⊕ X1

Q-solution to Y1 either P-solution to X0 or Q-instance
...

...
...

n Xn−1 Yn ≤T X0 ⊕ · · · ⊕ Xn−1
Q-solution to Yn−1 either P-solution to X0 or Q-instance

...
...

...

Player 2 wins if it ever plays a P-solution to X0, or if Player 1 has no valid move.

Player 1 wins otherwise. When either player wins, the game stops.



A game-theoretic characterization

Thm (Hirschfeldt and Jockusch). Let P and Q be problems. If every ω-model
of RCA0 +Q is a model of P, then Player 2 has a winning strategy for
G(Q→ P). Otherwise, Player 1 has a winning strategy.

Recall that ≤W =⇒ ≤c =⇒ implication over ω-models.

Note that this also captures computable reducibility: P ≤c Q iff Player 2 has a
winning strategy for G(Q→ P) that wins in exactly two moves.

Defn. A strategy for Player 2 is computable if there is a Turing functional Φ
such that Yn = Φ(n, X0 ⊕ · · · ⊕ Xn−1).

Now P ≤W Q iff Player 2 has a computable winning strategy for G(Q→ P)
that wins in exactly two moves.



Counting moves

Example. Player 2 has a computable winning strategy for G(RT12 → RT1<∞).

• Player 1 plays c : ω → 3 = {0, 1, 2}.

• Player 2 plays d1 : ω → 2 defined by d0(x) is 0 if c(x) = 0 and 1 otherwise.

• Player 1 plays an infinite homogeneous set H1 = {y0 < y1 < · · · } for d1.

• Player 2 plays d2 : ω → 2 defined by d1(x) is 0 if c(yx) = 1 and 1 otherwise.

• Player 1 plays an infinite homogeneous set H2 for d2.

• Player 2 plays {yx ∈ H1 : x ∈ H2} as an infinite homogeneous set for c.

Thm (Hirschfeldt and Jockusch). There is no n s.t. Player 2 has a computable
winning strategy for G(RT12 → RT1<∞) that wins in ≤ n moves.

Compare with: RCA0 ⊢ RT12, but by results of Hirst, RCA0 ⊬ RT1<∞.



Generalized games

Let P, Q be problems; Γ a set of L2 formulas. GΓ(Q→ P) is the game:

move Player 1 Player 2
1 M - L1-structure Y1 ∈ M[X0]

X0 - P-instance s.t. M[X0] either P-solution to X0
X0 - is consistent with Γ or Q-instance

2 X1 Y2 ∈ M[X0, X1]
Q-solution to Y1 s.t. M[X0, X1] either P-solution to X0
is consistent with Γ or Q-instance

3 X2 Y3 ∈ M[X0, X1, X2]
Q-solution to Y1 s.t. either P-solution to X0
M[X0, X1, X2] is consistent with Γ or Q-instance

...
...

...



Generalized games

Let P, Q be problems; Γ a set of L2 formulas. ĜΓ(Q→ P) is the game:

move Player 1 Player 2
1 (M,S) |= Γ Y1 ∈ M[X0]

X0 ∈ S either P-solution to X0
P-instance or Q-instance

2 X1 ∈ S Y2 ∈ M[X0, X1]
Q-solution to Y1 either P-solution to X0

or Q-instance
3 X2 ∈ S Y3 ∈ M[X0, X1, X2]

Q-solution to Y1 either P-solution to X0
or Q-instance

...
...

...



Characterizing provability

In order of difficulty, from hardest for Player 2, to hardest for Player 1, we have:

• GΓ(Q→ P) GΓ+Q(Q→ P) ĜΓ(Q→ P) ĜΓ+Q(Q→ P)

Prop (Dzhafarov, Hirschfeldt, and Reitzes). Let P, Q be problems. Let Γ be a
consistent extension of ∆01-CA by Π11 formulas.

1) If Γ ⊢ Q→ P, then Player 2 has a winning strategy for GΓ(Q→ P).

2) Otherwise, Player 1 has a winning strategy for ĜΓ+Q(Q→ P).

Thm (Dzhafarov, Hirschfeldt, and Reitzes). Let P, Q be problems. Let Γ be a
consistent extension of ∆01-CA byΠ11 formulas including a universalΣ0

1 formula.

1) If Γ ⊢ Q→ P, there is an n ∈ ω such that Player 2 has a winning strategy for
1) ĜΓ(Q→ P) that ensures victory in at most n moves.

2) Otherwise, Player 1 has a winning strategy for ĜΓ+Q(Q→ P).



Applications

Thm (folklore). If ACA0 ⊢ P then there is an n ∈ ω such that every instance X
of P has a solution computable in X(n).

Pf. If ACA0 ⊢ P then RCA0 ⊢ Q→ P, where Q = (∀X)[X′ exists]. Fix n from
theorem. Consider the game ĜΓ(Q→ P) where on its first move, Player 1
plays the ω-model {Y : Y ≤T X(n)} and the P-instance X.

Note that if the Π11 formulas added to ∆01-CA to get Γ are true, then a winning
strategy for ĜΓ(Q→ P) yields a winning strategy for G(Q→ P).

Patey showed there is no bound on Player 2’s moves in G(RT22 → RT2<∞).

Cor. RT2k ⊬ RT2<∞ even over RCA0 + all true Π11 formulas.

By an old result of Cholak, Jockusch, and Slaman, RCA0 ⊬ RT22 → RT2<∞. The
proof exploits a failure of arithmetical induction, a true Π11 statement.



Proof of the main theorem

Lem. For n ∈ ω, letΘn(e0, . . . , en, X0, . . . , Xn, Y0, . . . , Yn) be the formula

if X0 is a P-instance then (Y0 = ΦX0
e0 and Y0 is a P-solution to X0, or

Y0 is a Q-instance, and

if X1 is a Q-solution to Y0 then (Y1 = ΦX0⊕X1
e1 and Y1 is a P-solution to X0, or

Y1 is a Q-instance, and

if X2 is a Q-solution to Y1 then (Y2 = ΦX0⊕X1⊕X2
e2 and Y2 is a P-solution to X0, or

...

. . . (Yn = ΦX0⊕···⊕Xn
en and Yn is a solution to X0)) · · · ).

Let ∆n be ∀X0∃e0, Y0 · · · ∀Xn∃en, YnΘn(e0, . . . , en, X0, . . . , Xn, Y0, . . . , Yn).

If Γ ⊢ Q→ P then Γ ⊢ ∆n for some n ∈ ω.



Proof of the main theorem

Suppose Γ ⊢ Q→ P but Γ ⊬ ∆n for all n.

Expand L2 to L′2 by adding a function symbol f from (strings of) first-order
objects to second-order objects.

For each n, there is a modelM = (M, S) |= Γ + ¬∆n. We can expand this to
an L′2-structure using the failure of ∆n to define fM as a Skolem function.

M and fM then satisfies Γ together withΨn =

∀e0, Y0 · · · ∀en, Yn¬Θn(e0, . . . , ek, f(⟨⟩), f(⟨e0⟩), . . . , f(⟨e0 · · · en⟩), Y0, . . . , Yn).

By compactness, there is a modelN of Γ ∪ {Ψ1,Ψ2, . . .}.

But now fN gives a winning strategy for Player 1 in GΓ(Q→ P).



Extensions

We don’t know if in our theorem we can replace ĜΓ(Q→ P) by GΓ(Q→ P).

But we can do so for natural cases, where the strategy is definable.

Prop (Dzhafarov, Hirschfeldt, and Reitzes. Let P, Q be problems. Let Γ be a
consistent extension of ∆01-CA by Π11 formulas. TFAE:

1) Player 2 has a computable winning strategy for ĜΓ(Q→ P).

2) Player 2 has a computable winning strategy for GΓ(Q→ P).

3) There is an n ∈ ω s.t. Player 2 has a computable winning strategy that wins
3) every run of ĜΓ(Q→ P) in at most n moves.

4) There is an n ∈ ω s.t. Player 2 has a computable winning strategy that wins
4) every run of GΓ(Q→ P) in at most n moves.

The n’s in (3) and (4) are the same.



Variations of BΣ0
2

Fix a class Γ of L2-formulas. Recall the following scheme:

BΓ: (∀n)[(∀x < n)(∃y)ϕ(x, y)→ (∃b)(∀x < n)(∃y < b)ϕ(x, y)],

BΓ: where ϕ ∈ Γ.

A frequently encountered principle in reverse math is BΣ0
2. It’s not provable in

RCA0, but it shows up naturally in many RM arguments. It has many important
equivalent formulations.

Thm (Hirst). Over RCA0, BΣ0
2 is equivalent to RT1<∞.

By our theorem, such equivalences correspond with the existence of winning
strategies for Player 2 in the game ĜRCA0 .

Question. When can these strategies be chosen to be computable?



Example: the limit homogeneous problem

Consider the following principle:

LH: For every c : [ω]2 → 2 such that limy c(x, y) = 1 for all x, there is an infinite
LH: set H such that c(x, y) = 1 for all x, y ∈ H.

Observation. Over RCA0, LH is equivalent to the bounding principle BΣ0
2.

Pf. (←) Assume BΣ0
2. Fix an instance c : [ω]

2 → 2 of LH. There is a
∆01-definable way to thin N to a homogeneous set for c. BΣ0

2 is used to prove
that the thinning process is total.

(→) We prove LH→ RT1<∞. Fix d : ω → k and assume no homogeneous set
for d is infinite. Define c(x, y) = 0 if d(x) = d(y) and c(x, y) = 1 otherwise.
Then limy c(x, y) = 1 for all x. A homogeneous set for c contradicts d only
using k many colors.



Example: the limit homogeneous problem

Prop (Dzhafarov, Hirschfeldt, and Reitzes). Player 2 has no computable
winning strategy for GRCA0(RT1<∞ → LH). This is true even if the number of
colors is not provided along with the instance of RT1<∞.

Pf idea. Player 1 begins by playing the standard model of N along with some
initial segment of an instance of LH. Player 2, playing according to a purported
computable strategy, responds by starting to define an instance of RT1<∞.

Player 1 guesses at which color in the coloring will be used infinitely often.
Player 2’s strategy must defeat all these guesses, which it can only do by
increasing the number of colors. This can only happen finitely often.

Once Player 2 settles on a number of colors, Player 1 changes to playing in a
1-elementary extension of the standard model in which the portion of LH can
be extended so as to have no definable solution. By 1-elementarity, Player 2’s
instance of RT1<∞ must use the same number of colors in both models.



A finer measure of strength

Q→ P means P ≤W Q.

stRT1<∞
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A finer measure of strength

Q→ P means Player 2 has a computable winning strategy for GRCA0(Q→ P).

stRT1<∞
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Thanks for your attention!


