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The computability-theoretic perspective

We are interested in statements of the form

∀X [Φ(X)→ ∃YΨ(X, Y)],

where Φ andΨ are some kind of properties of X and Y.

We think of this as a problem, “given X satisfying Φ, find Y satisfyingΨ”.

We call the X such that Φ(X) holds the instances of the problem,
and the Y such thatΨ(X, Y) holds the solutions to X for this problem.

Typically, we look at problems whose instances and solutions are subsets of N,
and where the properties Φ andΨ are arithmetical.

Basic question. Given an instance of a problem, how complex are its solutions?



Measuring complexity

Computability theory:

• Does every instance compute a solution to itself?

• Does every instance have an arithmetically-definable solution?

• Is there a computable instance all of whose solutions compute ∅′?

Reverse mathematics/proof theory:

• We look at subsystems of second-order arithmetic, RCA0, WKL, ACA0, ...

• Is the theorem provable in RCA0?

• Is the theorem provable in ACA0?

• Does the theorem imply ACA over RCA0?

There is well-understood interplay between these viewpoints.



Ramsey’s theorem

Definition. Fix X ⊆ N and n, k ≥ 1.

• [X]n = {F ⊆ X : |F| = n}.

• A k-coloring of [X]n is a map c : [X]n → k.

• A set Y ⊆ X is homogeneous for c if c is constant on [Y]n.

Ramsey’s theorem. For all n, k ≥ 1, every c : [N]n → k has an infinite
homogeneous set.

We let RTnk denote Ramsey’s theorem restricted to k-colorings of [N]n.

As a problem: The instances of RTnk are all c : [N]n → k.
The solutions to any specific such c are all its infinite homogeneous sets.



Other examples

Chain/antichain principle. Every partial ordering of N contains either an
infinite chain or an infinite antichain.

Ascending/descending sequence principle. Every infinite linear ordering of N
contains either an infinite ascending or an infinite descending sequence.

Erdős-Moser theorem. Every tournament on N has an infinite transitive
subtournament.

Rainbow Ramsey’s theorem. For all n, k ≥ 1 and all f : [N]n → N such that
|f−1(n)| < k for all n there is an infinite Y ⊆ N such that f is injective on [Y]n.

The atomic model theorem. Every complete atomic theory has an atomic
model.



Chubb-Hirst-McNicholl tree theorem

For X ⊆ 2<ω, write X ∼= 2ω if (X,⪯) and (2<ω,⪯) are isomorphic structures.

Such an X need not be closed under initial segments (⪯) or under meets (∧).

Definition. Fix X ⊆ 2<ω and n, k ≥ 1.

• [X]n = {F ⊆ X : |F| = n ∧ (∀σ, τ ∈ F)[σ ⪯ τ ∨ τ ⪯ σ]}.

• A k-coloring of [X]n is a map c : [X]n → k.

• A set Y ⊆ X is homogeneous for c if c is constant on [Y]n.

Chubb-Hirst-McNicholl tree theorem. For all n, k ≥ 1 and all c : [2<ω]n → k
there exists a Y ∼= 2<ω which is homogeneous for c.

We let TTnk denote the CHM tree theorem restricted to k-colorings of [2<ω]n.



TT and RT

Given d : [N]n → k, define c : [2<ω]n → k by

c(σ0, . . . , σn−1) = d(|σ0|, . . . , |σn−1|).

If Y ∼= 2<ω is homogeneous for c and L ⊆ Y is any ⪯-chain then

H = {|σ| : σ ∈ L}

is homogeneous for d.

Effectivity: c is computable from d, and H can be chosen computable from Y.
This can be formalized to show that for all n, k ≥ 1, RCA0 ⊢ TTnk → RTnk .

Patey (2016). Over RCA0, RT22 does not imply TT22.



Effective results about RT and TT

Jockusch (1972).
• For all n, k ≥ 1, every computable instance of RTnk has a Π

0
n solution.

• For all n ≥ 2, there is a computable instance of RTn2 all of whose solutions
• compute ∅(n−2).

• Thus, for all n ≥ 3 and k ≥ 2, RTnk is equivalent to ACA over RCA0.

Seetapun (1995). For all k ≥ 1, every computable instance of RT2k has a
solution not computing ∅′. Thus, over RCA0, RT2k does not imply ACA0.

Chubb, Hirst, and McNicholl (2005). For all n, k ≥ 1, every computable
instance of TTnk has a Π

0
n solution. Thus, ACA0 ⊢ TTnk . If n ≥ 3, equivalent.

Dzhafarov and Patey (2017). For all k ≥ 1, every computable instance of TT2k
has a solution not computing ∅′. Thus, over RCA0, TT2k does not imply ACA0.



Strong subtrees

Definition. A tree is a subset T of ω<ω as follows:

• there exists a root ρ ∈ T such that ρ ⪯ σ for all σ ∈ T;

• if σ, τ ∈ T then also σ ∧ τ ∈ T;

• every σ ∈ T there are finitely many τ ∈ T such that σ ≺ τ and there is no
• τ ′ such that σ ≺ τ ′ ≺ τ .

For each n ∈ N, let T(n) = {σ ∈ T : |τ ∈ T : τ ≺ σ| = n}
and height(T) = sup{n+ 1 ∈ N : T(n) ̸= ∅}.

Definition Let U ⊆ T be trees. U is a strong subtree of T if:

• there is a level function f : height(U)→ textheight(T) such that
• for all n < height(U), if σ ∈ U(n) then σ ∈ T(f(n)).

• a node σ ∈ U is k-branching in U if and only if it is k-branching in T.



Examples of subtrees, strong and not strong
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Milliken’s tree theorem

For a tree T, let Sα(T) be the class of all strong subtrees of T of height α ≤ ω.

Milliken’s tree theorem. Let T be an infinite tree with no leaves. For all n, k ≥ 1
and all c : Sn(T)→ k there is a U ∈ Sω(T) such that c is contant on Sn(U).

We let MTTnk denote Milliken’s tree theorem restricted to k-colorings of Sn(T).

Proved byMilliken (1979).

For a newer proof, see Todorcevic (2010).

Generalizes many combinatorial results, including Ramsey’s theorem.

Dobrinen (2018). What about the effectivity/reverse math of MTT?



MTT and TT

Given d : [2<ω]2 → k, define c : S2(2<ω)→ k as follows: for every
{σ, τ0, τ1} ∈ S2(2<ω) with τi ⪰ σi, define

c(σ, τ0, τ1) = d(σ, τ0).

Let U ∈ Sω(2<ω) be such that c is constant on S2(U). Then U can be thinned
out to a set Y ∼= 2<ω that is homogeneous for d.

Effectivity: c is computable from d, and Y can be chosen to be computable
from V. This can be formalized in RCA0.

The argument can be easily extended to arbitrary exponents.

Fact. For all n, k ≥ 1, RCA0 ⊢ MTTnk → TTnk .



The case n = 1

Ramsey’s theorem and the Chubb-Hirst-McNicholl tree theorem can each be
proved by induction on the exponent n. The inductive step uses the n = 1
case to increase the exponent.

Milliken’s tree theorem for n = 1. Let T be an infinite tree with no leaves. For
all k ≥ 1 and all c : T→ k there exists U ∈ Sω(T) such that c is constant on U.

But MTT1k is not enough to carry out the induction in the proof of Milliken’s tree
theorem. Instead, the following stronger result is needed.

Halpern-Laüchli theorem. Fix d ≥ 1, and let T0, . . . , Td−1 be infinite trees with
no leaves. For all k ≥ 1 and all c :

∪
n

∏
i<d Ti(n)→ k there exist U0, . . . ,Ud−1

in Sω(T0), . . . ,Sω(Td−1), respectively, with common level function, such that c
is constant on

∪
n

∏
i<d Ui(n).



Product version of Milliken’s tree theorem

Given trees T0, . . . , Td−1, let Sα(T0, . . . , Td−1) denote the collection of all
tuples (U0, . . . ,Ud−1) such that Ui ∈ Sα(Ti) and the Ui have a common level
function.

Product version of Milliken’s tree theorem. Fix d ≥ 1, and let T0, . . . , Td−1 be
infinite trees with no leaves. For all k ≥ 1 and all c : Sn(T0, . . . , Td−1)→ k
there exists (U0, . . . ,Ud−1) ∈ Sω(T0, . . . , Td−1) such that c is constant on
Sn(U0, . . . ,Ud−1).

We let PMTTnk denote the product version of Milliken’s tree theorem restricted
to k-colorings of Sn(T0, . . . , Td−1).

So MTTnk is just PMTTnk for d = 1. Notice that the Halpern-Laüchli theorem is
exactly PMTT1k .



Halpern-Laüchli theorem

Like RT1k and TT1k , it is easy to see that MTT1k is computably true, meaning that
each instance computes a solution to itself.

While the Halpern-Laüchli theorem appears on its face as just a kind of
parallelized/sequential version of MTT1k , this is misleading. It encompasses
much of the combinatorial core of the full Milliken’s tree theorem.

A careful analysis of the proof reveals it to be basically an effective
construction of a solution from a given instance of Halpern-Laüchli, with most
of the combinatorial machinery being used merely to verify that the
construction succeeds.

Thm (Anglès d’Auriac, Cholak, D., Monin, and Patey). The Halpern-Laüchli
theorem is computably true (and uniformly so, in an arithmetical oracle).



Upper bounds on Milliken’s tree theorem

Thm (Anglès d’Auriac, Cholak, D., Monin, and Patey). PMTT is arithmetically
true: every instance has a solution arithmetically definable in itself.

Corollary. For all n, k ≥ 1, ACA0 ⊢ PMTTnk .

Since MTTnk implies TTnk , which implies RTnk , we also have:

Corollary. For all n ≥ 3 and all k ≥ 2, the following are equivalent over RCA0:

1. ACA;

2. PMTTnk ;

3. MTTnk ;

4. TTnk ;

5. RTnk .



Cone avoidance and strong cone avoidance

Definition. Let P be a problem. Then P satisfies

• cone avoidance if for every A and every C ≰T A, every A-computable
• instance of P has a solution Y such that C ≰T A⊕ Y.

• strong cone avoidance if for every A and every C ≰T A, every
• instance of P has a solution Y such that C ≰T A⊕ Y.

If P satisfies cone avoidance then there is a model of RCA0 + P in which ACA
fails (indeed, a Turing ideal not containing ∅′).

Being computably true does not necessarily imply strong cone avoidance.

Dzhafarov and Jockusch (2009). RT12 admits strong cone avoidnace.

Dzhafarov and Patey (2017). TT12 admits strong cone avoidance.



Lower bounds on Milliken’s tree theorem for height 2

Thm (Anglès d’Auriac, Cholak, D., Monin, and Patey).
• The Halpern-Laüchli theorem satisfies strong cone avoidance.

• The product version of Milliken’s theorem for n = 2 satisfies cone avoidance.

Corollary. For all k ≥ 1, PMTT2k does not imply ACA over RCA0.

The proof is an effective forcing argument, following the scheme of Cholak,
Jockusch, and Slaman (2001) of splitting into a stable part and a cohesive part.

Definition. Fix d ≥ 1, and let T0, . . . , Td−1 be infinite trees with no leaves. A
coloring c : S2(T0, . . . , Td−1)→ k is stable if for each
(σ0, . . . , σd−1) ∈

∪
n

∏
i<d Ti(n) there is a N ∈ N and j < k such that

c(U0, . . . ,Ud−1) = j for all (U0, . . . ,Ud−1) ∈ S2(T0, . . . , Td−1) with
Ui(0) = σi and Ui(1) ⊆

∪
n>N Ti(n) for each i < d.



Schematic of proving cone avoidance

Stability. Strong cone avoidance of the n = 1 case of a problem lifts to cone
avoidance of the restriction to stable instances.

Strong cone avoidance of HL gives cone avoidance of stable PMTT2k .

Cohesiveness. Reducing from a general instance to a stable one on some
domain satisfies cone avoidance

For every instance (T0, . . . , Td−1) and c of PMTT2k there is (U0, . . . ,Ud−1) in
Sω(T0, . . . , Td−1) not computing a given C ≰T ∅ on which c is stable.

In our case, this requires the construction of certain very fast growing functions
that dominate the levels of all possible strong subtrees of height 2 with nice
computational properties. This values are analogous to Ramsey numbers.

Putting it together. The two results combine to give cone avoidance of PMTT2k .



Applications

Milliken’s tree theorem is false if, instead of coloring, say, S2(T), we color [T]2.

Example. Let T = 2<ω and set c(σ, τ) = i if τ ⪰ σi, for i < 2.

We cannot tell apart two pairs of comparable strings structurally. By enriching
the structure we can find distinct embedding types, e.g., {σ, σ0} and {σ, σ1}.

Definition. The big Ramsey degree of a structureA in a structure B is the least
number ℓ, if it exists, such that for all k ≥ 1 and all c :

(B
A
)
→ k there exists

B′ ∼= B such that |c′′
(B′
A
)
| ≤ ℓ.

See Zucker (2019) for a chracterization in terms of additional/enriched
structure (big Ramsey structures).

Many “existence of big Ramsey degrees” results follow from MTT.



The Rado graph theorem
LetR be the Rado graph (or random graph).

The Rado graph theorem. For every finite graph F there is an ℓ ∈ N such that
for every k ≥ 1 and every c :

(R
F

)
→ k there is a Random subgraphR′ ofR

such that |c′′
(R
F

)
| ≤ ℓ.

For each finite graph F, let ℓF be the least ℓ as above. Computed by
Sauer, Laflamme, Vuksanovic (2006); also for various F by Larson (2008).

Thm (Anglès d’Auriac, Cholak, D., Monin, and Patey).
• For every finite graph F of size 2, the Random graph theorem for F and
• ℓ = ℓF satisfies cone avoidance.

• For every finite graph F of size 3, there is a computable instance of the
• Random graph theorem for F and ℓ = ℓF s.t. every solution computes ∅′.



Devlin’s theorem

Devlin’s theorem. For every n ≥ 1 there is an ℓ ∈ N such that for every k ≥ 1
and every c : [Q]n → k there is a DLO S ⊆ Q such that |c′′[S]n|| ≤ ℓ.

Devlin (1980) computed for each n the least ℓ = ℓn satisfying the conclusion of
Devlin’s theorem. These turn out to be the number of Joyce trees of size n.

The rationals admit a representation in terms of 2<ω that allows Devlin’s
theorem to be derived from Milliken’s tree theorem. A pair of rationals thus
specifies three strings: one for each rational, and their meet.

Thm (Anglès d’Auriac, Cholak, D., Monin, and Patey).
• Devlin’s theorem for n = 1 is computably true.

• Devlin’s theorem for n = 2 and ℓ = 3 implies ACA0 over RCA0.

• Devlin’s theorem for n = 2 and ℓ = 4 satisfies cone avoidance.



Thanks for your attention!


