Milliken's tree theorem and computability theory

Damir D. Dzhafarov University of Connecticut

February 27, 2021

Joint work with Paul-Elliot Anglès d'Auriac, Peter Cholak, Benoît Monin, and Ludovic Patey.

The computability-theoretic perspective

We are interested in statements of the form

```
\forall X [\Phi(X) \rightarrow \exists Y \Psi(X, Y)],
```

where Φ and Ψ are some kind of properties of X and Y.

We think of this as a problem, "given X satisfying Φ , find Y satisfying Ψ ".

We call the X such that $\Phi(X)$ holds the instances of the problem, and the Y such that $\Psi(X, Y)$ holds the solutions to X for this problem.

Typically, we look at problems whose instances and solutions are subsets of $\mathbb N,$ and where the properties Φ and Ψ are arithmetical.

Basic question. Given an instance of a problem, how complex are its solutions?

Measuring complexity

Computability theory:

- Does every instance compute a solution to itself?
- Does every instance have an arithmetically-definable solution?
- Is there a computable instance all of whose solutions compute \emptyset' ?

Reverse mathematics/proof theory:

- We look at subsystems of second-order arithmetic, RCA₀, WKL, ACA₀, ...
- Is the theorem provable in RCA₀?
- Is the theorem provable in ACA₀?
- Does the theorem imply ACA over RCA₀?

There is well-understood interplay between these viewpoints.

Ramsey's theorem

Definition. Fix $X \subseteq \mathbb{N}$ and $n, k \ge 1$.

- $[X]^n = \{F \subseteq X : |F| = n\}.$
- A k-coloring of $[X]^n$ is a map $c : [X]^n \to k$.
- A set $Y \subseteq X$ is homogeneous for c if c is constant on $[Y]^n$.

Ramsey's theorem. For all $n, k \ge 1$, every $c : [\mathbb{N}]^n \to k$ has an infinite homogeneous set.

We let \mathbb{RT}_{k}^{n} denote Ramsey's theorem restricted to k-colorings of $[\mathbb{N}]^{n}$.

As a problem: The instances of RT_k^n are all $c : [\mathbb{N}]^n \to k$. The solutions to any specific such c are all its infinite homogeneous sets.

Other examples

Chain/antichain principle. Every partial ordering of \mathbb{N} contains either an infinite chain or an infinite antichain.

Ascending/descending sequence principle. Every infinite linear ordering of \mathbb{N} contains either an infinite ascending or an infinite descending sequence.

 $\operatorname{Erd} \operatorname{\widetilde{o}s-Moser}$ theorem. Every tournament on $\mathbb N$ has an infinite transitive subtournament.

Rainbow Ramsey's theorem. For all $n, k \ge 1$ and all $f : [\mathbb{N}]^n \to \mathbb{N}$ such that $|f^{-1}(n)| < k$ for all n there is an infinite $Y \subseteq \mathbb{N}$ such that f is injective on $[Y]^n$.

The atomic model theorem. Every complete atomic theory has an atomic model.

Chubb-Hirst-McNicholl tree theorem

For $X \subseteq 2^{<\omega}$, write $X \cong 2^{\omega}$ if (X, \preceq) and $(2^{<\omega}, \preceq)$ are isomorphic structures.

Such an X need not be closed under initial segments (\leq) or under meets (\land).

Definition. Fix $X \subseteq 2^{<\omega}$ and $n, k \ge 1$.

- $[X]^n = \{F \subseteq X : |F| = n \land (\forall \sigma, \tau \in F) [\sigma \preceq \tau \lor \tau \preceq \sigma]\}.$
- A k-coloring of $[X]^n$ is a map $c : [X]^n \to k$.
- A set $Y \subseteq X$ is homogeneous for c if c is constant on $[Y]^n$.

Chubb-Hirst-McNicholl tree theorem. For all $n, k \ge 1$ and all $c : [2^{<\omega}]^n \to k$ there exists a $Y \cong 2^{<\omega}$ which is homogeneous for c.

We let $\prod_{k=1}^{n}$ denote the CHM tree theorem restricted to k-colorings of $[2^{<\omega}]^n$.

TT and RT

Given $d: [\mathbb{N}]^n \to k$, define $c: [2^{<\omega}]^n \to k$ by

$$c(\sigma_0,\ldots,\sigma_{n-1})=d(|\sigma_0|,\ldots,|\sigma_{n-1}|).$$

If $Y \cong 2^{<\omega}$ is homogeneous for c and $L \subseteq Y$ is any \preceq -chain then

$$H = \{ |\sigma| : \sigma \in L \}$$

is homogeneous for *d*.

Effectivity: *c* is computable from *d*, and *H* can be chosen computable from *Y*. This can be formalized to show that for all $n, k \ge 1$, $RCA_0 \vdash TT_k^n \rightarrow RT_k^n$.

Patey (2016). Over RCA_0 , RT_2^2 does not imply TT_2^2 .

Effective results about RT and TT

Jockusch (1972).

- For all $n, k \ge 1$, every computable instance of RT_k^n has a \prod_n^0 solution.
- For all n ≥ 2, there is a computable instance of RTⁿ₂ all of whose solutions compute Ø⁽ⁿ⁻²⁾.
- Thus, for all $n \ge 3$ and $k \ge 2$, RT_k^n is equivalent to ACA over RCA_0 .

Seetapun (1995). For all $k \ge 1$, every computable instance of RT_k^2 has a solution not computing \emptyset' . Thus, over RCA₀, RT_k^2 does not imply ACA₀.

Chubb, **Hirst**, and **McNicholl** (2005). For all $n, k \ge 1$, every computable instance of TT_k^n has a $\prod_{n=1}^{\infty}$ solution. Thus, ACA₀ $\vdash TT_k^n$. If $n \ge 3$, equivalent.

Dzhafarov and Patey (2017). For all $k \ge 1$, every computable instance of TT_k^2 has a solution not computing \emptyset' . Thus, over RCA₀, TT_k^2 does not imply ACA₀.

Strong subtrees

Definition. A tree is a subset *T* of $\omega^{<\omega}$ as follows:

- there exists a root $\rho \in T$ such that $\rho \preceq \sigma$ for all $\sigma \in T$;
- if $\sigma, \tau \in T$ then also $\sigma \land \tau \in T$;
- every $\sigma \in T$ there are finitely many $\tau \in T$ such that $\sigma \prec \tau$ and there is no τ' such that $\sigma \prec \tau' \prec \tau$.

For each
$$n \in \mathbb{N}$$
, let $T(n) = \{\sigma \in T : |\tau \in T : \tau \prec \sigma| = n\}$
and height $(T) = \sup\{n + 1 \in \mathbb{N} : T(n) \neq \emptyset\}.$

Definition Let $U \subseteq T$ be trees. U is a strong subtree of T if:

- there is a level function f: height(U) \rightarrow textheight(T) such that for all n < height(U), if $\sigma \in U(n)$ then $\sigma \in T(f(n))$.
- a node $\sigma \in U$ is k-branching in U if and only if it is k-branching in T.

Examples of subtrees, strong and not strong

Milliken's tree theorem

For a tree T, let $S_{\alpha}(T)$ be the class of all strong subtrees of T of height $\alpha \leq \omega$.

Milliken's tree theorem. Let T be an infinite tree with no leaves. For all $n, k \ge 1$ and all $c : S_n(T) \to k$ there is a $U \in S_{\omega}(T)$ such that c is contant on $S_n(U)$.

We let MTT_k^n denote Milliken's tree theorem restricted to k-colorings of $S_n(T)$.

Proved by Milliken (1979).

For a newer proof, see Todorcevic (2010).

Generalizes many combinatorial results, including Ramsey's theorem.

Dobrinen (2018). What about the effectivity/reverse math of MTT?

MTT and TT

Given $d : [2^{<\omega}]^2 \to k$, define $c : S_2(2^{<\omega}) \to k$ as follows: for every $\{\sigma, \tau_0, \tau_1\} \in S_2(2^{<\omega})$ with $\tau_i \succeq \sigma_i$, define

$$c(\sigma, \tau_0, \tau_1) = d(\sigma, \tau_0).$$

Let $U \in S_{\omega}(2^{<\omega})$ be such that *c* is constant on $S_2(U)$. Then *U* can be thinned out to a set $Y \cong 2^{<\omega}$ that is homogeneous for *d*.

Effectivity: c is computable from d, and Y can be chosen to be computable from V. This can be formalized in RCA₀.

The argument can be easily extended to arbitrary exponents.

Fact. For all $n, k \geq 1$, $RCA_0 \vdash MTT_k^n \rightarrow TT_k^n$.

The case n = 1

Ramsey's theorem and the Chubb-Hirst-McNicholl tree theorem can each be proved by induction on the exponent n. The inductive step uses the n = 1 case to increase the exponent.

Milliken's tree theorem for n = 1. Let T be an infinite tree with no leaves. For all $k \ge 1$ and all $c : T \to k$ there exists $U \in S_{\omega}(T)$ such that c is constant on U.

But MTT_k^1 is not enough to carry out the induction in the proof of Milliken's tree theorem. Instead, the following stronger result is needed.

Halpern-Laüchli theorem. Fix $d \ge 1$, and let T_0, \ldots, T_{d-1} be infinite trees with no leaves. For all $k \ge 1$ and all $c : \bigcup_n \prod_{i < d} T_i(n) \to k$ there exist U_0, \ldots, U_{d-1} in $S_{\omega}(T_0), \ldots, S_{\omega}(T_{d-1})$, respectively, with common level function, such that c is constant on $\bigcup_n \prod_{i < d} U_i(n)$.

Product version of Milliken's tree theorem

Given trees T_0, \ldots, T_{d-1} , let $S_{\alpha}(T_0, \ldots, T_{d-1})$ denote the collection of all tuples (U_0, \ldots, U_{d-1}) such that $U_i \in S_{\alpha}(T_i)$ and the U_i have a common level function.

Product version of Milliken's tree theorem. Fix $d \ge 1$, and let T_0, \ldots, T_{d-1} be infinite trees with no leaves. For all $k \ge 1$ and all $c : S_n(T_0, \ldots, T_{d-1}) \to k$ there exists $(U_0, \ldots, U_{d-1}) \in S_{\omega}(T_0, \ldots, T_{d-1})$ such that c is constant on $S_n(U_0, \ldots, U_{d-1})$.

We let PMTTⁿ_k denote the product version of Milliken's tree theorem restricted to k-colorings of $S_n(T_0, \ldots, T_{d-1})$.

So MTT^{*n*}_{*k*} is just PMTT^{*n*}_{*k*} for d = 1. Notice that the Halpern-Laüchli theorem is exactly PMTT¹_{*k*}.

Halpern-Laüchli theorem

Like RT_k^1 and TT_k^1 , it is easy to see that MTT_k^1 is computably true, meaning that each instance computes a solution to itself.

While the Halpern-Laüchli theorem appears on its face as just a kind of parallelized/sequential version of $MTT_{k'}^{1}$ this is misleading. It encompasses much of the combinatorial core of the full Milliken's tree theorem.

A careful analysis of the proof reveals it to be basically an effective construction of a solution from a given instance of Halpern-Laüchli, with most of the combinatorial machinery being used merely to verify that the construction succeeds.

Thm (Anglès d'Auriac, Cholak, D., Monin, and Patey). The Halpern-Laüchli theorem is computably true (and uniformly so, in an arithmetical oracle).

Upper bounds on Milliken's tree theorem

Thm (Anglès d'Auriac, Cholak, D., Monin, and Patey). PMTT is arithmetically true: every instance has a solution arithmetically definable in itself.

Corollary. For all $n, k \ge 1$, ACA₀ \vdash PMTTⁿ_k.

Since MTT_k^n implies TT_k^n , which implies RT_k^n , we also have:

Corollary. For all $n \ge 3$ and all $k \ge 2$, the following are equivalent over RCA₀:

- 1. ACA;
- 2. PMTT_k;
- 3. MTT_k^n ;
- 4. TTⁿ;
- 5. RT_k^n .

Cone avoidance and strong cone avoidance

Definition. Let P be a problem. Then P satisfies

- cone avoidance if for every A and every $C \nleq_T A$, every A-computable instance of P has a solution Y such that $C \nleq_T A \oplus Y$.
- strong cone avoidance if for every A and every $C \nleq_T A$, every instance of P has a solution Y such that $C \nleq_T A \oplus Y$.

If P satisfies cone avoidance then there is a model of RCA₀ + P in which ACA fails (indeed, a Turing ideal not containing \emptyset').

Being computably true does not necessarily imply strong cone avoidance.

Dzhafarov and Jockusch (2009). RT_2^1 admits strong cone avoidnace.

Dzhafarov and Patey (2017). TT_2^1 admits strong cone avoidance.

Lower bounds on Milliken's tree theorem for height 2

Thm (Anglès d'Auriac, Cholak, D., Monin, and Patey).

- The Halpern-Laüchli theorem satisfies strong cone avoidance.
- The product version of Milliken's theorem for n = 2 satisfies cone avoidance.

Corollary. For all $k \ge 1$, PMTT²_k does not imply ACA over RCA₀.

The proof is an effective forcing argument, following the scheme of **Cholak**, **Jockusch**, and **Slaman** (2001) of splitting into a stable part and a cohesive part.

Definition. Fix $d \ge 1$, and let T_0, \ldots, T_{d-1} be infinite trees with no leaves. A coloring $c : S_2(T_0, \ldots, T_{d-1}) \to k$ is stable if for each $(\sigma_0, \ldots, \sigma_{d-1}) \in \bigcup_n \prod_{i < d} T_i(n)$ there is a $N \in \mathbb{N}$ and j < k such that $c(U_0, \ldots, U_{d-1}) = j$ for all $(U_0, \ldots, U_{d-1}) \in S_2(T_0, \ldots, T_{d-1})$ with $U_i(0) = \sigma_i$ and $U_i(1) \subseteq \bigcup_{n > N} T_i(n)$ for each i < d.

Schematic of proving cone avoidance

Stability. Strong cone avoidance of the n = 1 case of a problem lifts to cone avoidance of the restriction to stable instances.

Strong cone avoidance of HL gives cone avoidance of stable $PMTT_k^2$.

Cohesiveness. Reducing from a general instance to a stable one on some domain satisfies cone avoidance

For every instance (T_0, \ldots, T_{d-1}) and c of PMTT²_k there is (U_0, \ldots, U_{d-1}) in $S_{\omega}(T_0, \ldots, T_{d-1})$ not computing a given $C \not\leq_T \emptyset$ on which c is stable.

In our case, this requires the construction of certain very fast growing functions that dominate the levels of all possible strong subtrees of height 2 with nice computational properties. This values are analogous to Ramsey numbers.

Putting it together. The two results combine to give cone avoidance of $PMTT_k^2$.

Applications

Milliken's tree theorem is false if, instead of coloring, say, $S_2(T)$, we color $[T]^2$.

Example. Let $T = 2^{<\omega}$ and set $c(\sigma, \tau) = i$ if $\tau \succeq \sigma i$, for i < 2.

We cannot tell apart two pairs of comparable strings structurally. By enriching the structure we can find distinct embedding types, e.g., $\{\sigma, \sigma 0\}$ and $\{\sigma, \sigma 1\}$.

Definition. The big Ramsey degree of a structure \mathcal{A} in a structure \mathcal{B} is the least number ℓ , if it exists, such that for all $k \ge 1$ and all $c : \binom{\mathcal{B}}{\mathcal{A}} \to k$ there exists $\mathcal{B}' \cong \mathcal{B}$ such that $|c''\binom{\mathcal{B}'}{\mathcal{A}}| \le \ell$.

See **Zucker (2019)** for a chracterization in terms of additional/enriched structure (big Ramsey structures).

Many "existence of big Ramsey degrees" results follow from MTT.

The Rado graph theorem

Let ${\mathcal R}$ be the Rado graph (or random graph).

The Rado graph theorem. For every finite graph F there is an $\ell \in \mathbb{N}$ such that for every $k \geq 1$ and every $c : \binom{\mathcal{R}}{F} \to k$ there is a Random subgraph \mathcal{R}' of \mathcal{R} such that $|c''\binom{\mathcal{R}}{F}| \leq \ell$.

For each finite graph *F*, let ℓ_F be the least ℓ as above. Computed by Sauer, Laflamme, Vuksanovic (2006); also for various *F* by Larson (2008).

Thm (Anglès d'Auriac, Cholak, D., Monin, and Patey).

- For every finite graph F of size 2, the Random graph theorem for F and $\ell = \ell_F$ satisfies cone avoidance.
- For every finite graph F of size 3, there is a computable instance of the Random graph theorem for F and $\ell = \ell_F$ s.t. every solution computes \emptyset' .

Devlin's theorem

Devlin's theorem. For every $n \ge 1$ there is an $\ell \in \mathbb{N}$ such that for every $k \ge 1$ and every $c : [\mathbb{Q}]^n \to k$ there is a DLO $S \subseteq \mathbb{Q}$ such that $|c''[S]^n|| \le \ell$.

Devlin (1980) computed for each *n* the least $\ell = \ell_n$ satisfying the conclusion of Devlin's theorem. These turn out to be the number of Joyce trees of size *n*.

The rationals admit a representation in terms of $2^{<\omega}$ that allows Devlin's theorem to be derived from Milliken's tree theorem. A pair of rationals thus specifies three strings: one for each rational, and their meet.

Thm (Anglès d'Auriac, Cholak, D., Monin, and Patey).

- Devlin's theorem for n = 1 is computably true.
- Devlin's theorem for n = 2 and $\ell = 3$ implies ACA₀ over RCA₀.
- Devlin's theorem for n = 2 and $\ell = 4$ satisfies cone avoidance.

Thanks for your attention!