Milliken's tree theorem and computability theory

Damir D. Dzhafarov
University of Connecticut

February 27, 2021

Joint work with Paul-Elliot Anglès d'Auriac, Peter Cholak, Benoît Monin, and Ludovic Patey.

The computability-theoretic perspective

We are interested in statements of the form

$$
\forall X[\Phi(X) \rightarrow \exists Y \Psi(X, Y)]
$$

where Φ and Ψ are some kind of properties of X and Y.
We think of this as a problem, "given X satisfying Φ, find Y satisfying Ψ ".
We call the X such that $\Phi(X)$ holds the instances of the problem, and the Y such that $\Psi(X, Y)$ holds the solutions to X for this problem.

Typically, we look at problems whose instances and solutions are subsets of \mathbb{N}, and where the properties Φ and ψ are arithmetical.

Basic question. Given an instance of a problem, how complex are its solutions?

Measuring complexity

Computability theory:

- Does every instance compute a solution to itself?
- Does every instance have an arithmetically-definable solution?
- Is there a computable instance all of whose solutions compute \emptyset^{\prime} ?

Reverse mathematics/proof theory:

- We look at subsystems of second-order arithmetic, RCA $, W K L, A C A_{0}, \ldots$
- Is the theorem provable in RCA_{0} ?
- Is the theorem provable in ACA_{0} ?
- Does the theorem imply ACA over RCA_{0} ?

There is well-understood interplay between these viewpoints.

Ramsey's theorem

Definition. Fix $X \subseteq \mathbb{N}$ and $n, k \geq 1$.

- $[X]^{n}=\{F \subseteq X:|F|=n\}$.
- A k-coloring of $[X]^{n}$ is a map $c:[X]^{n} \rightarrow k$.
- A set $Y \subseteq X$ is homogeneous for c if c is constant on $[Y]^{n}$.

Ramsey's theorem. For all $n, k \geq 1$, every $c:[\mathbb{N}]^{n} \rightarrow k$ has an infinite homogeneous set.

We let $R T_{k}^{n}$ denote Ramsey's theorem restricted to k-colorings of $[\mathbb{N}]^{n}$.

As a problem: The instances of RT_{k}^{n} are all $c:[\mathbb{N}]^{n} \rightarrow k$. The solutions to any specific such c are all its infinite homogeneous sets.

Other examples

Chain/antichain principle. Every partial ordering of \mathbb{N} contains either an infinite chain or an infinite antichain.

Ascending/descending sequence principle. Every infinite linear ordering of \mathbb{N} contains either an infinite ascending or an infinite descending sequence.

Erdős-Moser theorem. Every tournament on \mathbb{N} has an infinite transitive subtournament.

Rainbow Ramsey's theorem. For all $n, k \geq 1$ and all $f:[\mathbb{N}]^{n} \rightarrow \mathbb{N}$ such that $\left|f^{-1}(n)\right|<k$ for all n there is an infinite $Y \subseteq \mathbb{N}$ such that f is injective on $[Y]^{n}$.

The atomic model theorem. Every complete atomic theory has an atomic model.

Chubb-Hirst-McNicholl tree theorem

For $X \subseteq 2^{<\omega}$, write $X \cong 2^{\omega}$ if (X, \preceq) and $\left(2^{<\omega}, \preceq\right)$ are isomorphic structures. Such an X need not be closed under initial segments (\preceq) or under meets (\wedge).

Definition. Fix $X \subseteq 2^{<\omega}$ and $n, k \geq 1$.

- $[X]^{n}=\{F \subseteq X:|F|=n \wedge(\forall \sigma, \tau \in F)[\sigma \preceq \tau \vee \tau \preceq \sigma]\}$.
- A k-coloring of $[X]^{n}$ is a map $c:[X]^{n} \rightarrow k$.
- A set $Y \subseteq X$ is homogeneous for c if c is constant on $[Y]^{n}$.

Chubb-Hirst-McNicholl tree theorem. For all $n, k \geq 1$ and all $c:\left[2^{<\omega}\right]^{n} \rightarrow k$ there exists a $Y \cong 2^{<\omega}$ which is homogeneous for c.

We let $T T_{k}^{n}$ denote the CHM tree theorem restricted to k-colorings of $\left[2^{<\omega}\right]^{n}$.

TT and RT

Given $d:[\mathbb{N}]^{n} \rightarrow k$, define $c:\left[2^{<\omega}\right]^{n} \rightarrow k$ by

$$
c\left(\sigma_{0}, \ldots, \sigma_{n-1}\right)=d\left(\left|\sigma_{0}\right|, \ldots,\left|\sigma_{n-1}\right|\right) .
$$

If $Y \cong 2^{<\omega}$ is homogeneous for c and $L \subseteq Y$ is any \preceq-chain then

$$
H=\{|\sigma|: \sigma \in L\}
$$

is homogeneous for d.

Effectivity: c is computable from d, and H can be chosen computable from Y. This can be formalized to show that for all $n, k \geq 1, \mathrm{RCA}_{0} \vdash \mathrm{TT}_{k}^{n} \rightarrow R \mathrm{~T}_{k}^{n}$.

Patey (2016). Over $R C A_{0}, ~ R T_{2}^{2}$ does not imply TT_{2}^{2}.

Effective results about RT and TT

Jockusch (1972).

- For all $n, k \geq 1$, every computable instance of $R T_{k}^{n}$ has a Π_{n}^{0} solution.
- For all $n \geq 2$, there is a computable instance of RT_{2}^{n} all of whose solutions compute $\emptyset^{(n-2)}$.
- Thus, for all $n \geq 3$ and $k \geq 2$, $R T_{k}^{n}$ is equivalent to ACA over $R C A_{0}$.

Seetapun (1995). For all $k \geq 1$, every computable instance of $R T_{k}^{2}$ has a solution not computing \emptyset^{\prime}. Thus, over $R C A_{0}, R_{k}^{2}$ does not imply $A C A_{0}$.

Chubb, Hirst, and McNicholl (2005). For all $n, k \geq 1$, every computable instance of TT_{k}^{n} has a Π_{n}^{0} solution. Thus, $A C A_{0} \vdash \mathrm{~T}_{k}^{n}$. If $n \geq 3$, equivalent.

Dzhafarov and Patey (2017). For all $k \geq 1$, every computable instance of TT_{k}^{2} has a solution not computing \emptyset^{\prime}. Thus, over $R C A_{0}, T_{k}^{2}$ does not imply ACA_{0}.

Strong subtrees

Definition. A tree is a subset T of $\omega^{<\omega}$ as follows:

- there exists a root $\rho \in T$ such that $\rho \preceq \sigma$ for all $\sigma \in T$;
- if $\sigma, \tau \in T$ then also $\sigma \wedge \tau \in T$;
- every $\sigma \in T$ there are finitely many $\tau \in T$ such that $\sigma \prec \tau$ and there is no τ^{\prime} such that $\sigma \prec \tau^{\prime} \prec \tau$.

For each $n \in \mathbb{N}$, let $T(n)=\{\sigma \in T:|\tau \in T: \tau \prec \sigma|=n\}$ and $\operatorname{height}(T)=\sup \{n+1 \in \mathbb{N}: T(n) \neq \emptyset\}$.

Definition Let $U \subseteq T$ be trees. U is a strong subtree of T if:

- there is a level function f : height $(U) \rightarrow$ textheight (T) such that for all $n<$ height (U), if $\sigma \in U(n)$ then $\sigma \in T(f(n))$.
- a node $\sigma \in U$ is k-branching in U if and only if it is k-branching in T.

Examples of subtrees, strong and not strong

Milliken's tree theorem

For a tree T, let $\mathcal{S}_{\alpha}(T)$ be the class of all strong subtrees of T of height $\alpha \leq \omega$.
Milliken's tree theorem. Let T be an infinite tree with no leaves. For all $n, k \geq 1$ and all $c: \mathcal{S}_{n}(T) \rightarrow k$ there is a $U \in \mathcal{S}_{\omega}(T)$ such that c is contant on $\mathcal{S}_{n}(U)$.

We let MTT_{k}^{n} denote Milliken's tree theorem restricted to k-colorings of $\mathcal{S}_{n}(T)$.

Proved by Milliken (1979).
For a newer proof, see Todorcevic (2010).

Generalizes many combinatorial results, including Ramsey's theorem.
Dobrinen (2018). What about the effectivity/reverse math of MTT?

MTT and TT

Given $d:\left[2^{<\omega}\right]^{2} \rightarrow k$, define $c: \mathcal{S}_{2}\left(2^{<\omega}\right) \rightarrow k$ as follows: for every $\left\{\sigma, \tau_{0}, \tau_{1}\right\} \in \mathcal{S}_{2}\left(2^{<\omega}\right)$ with $\tau_{i} \succeq \sigma i$, define

$$
c\left(\sigma, \tau_{0}, \tau_{1}\right)=d\left(\sigma, \tau_{0}\right)
$$

Let $U \in \mathcal{S}_{\omega}\left(2^{<\omega}\right)$ be such that c is constant on $\mathcal{S}_{2}(U)$. Then U can be thinned out to a set $Y \cong 2^{<\omega}$ that is homogeneous for d.

Effectivity: c is computable from d, and Y can be chosen to be computable from V. This can be formalized in $R C A_{0}$.

The argument can be easily extended to arbitrary exponents.
Fact. For all $n, k \geq 1, \mathrm{RCA}_{0} \vdash \mathrm{MTT}_{k}^{n} \rightarrow \mathrm{TT}_{k}^{n}$.

The case $n=1$

Ramsey's theorem and the Chubb-Hirst-McNicholl tree theorem can each be proved by induction on the exponent n. The inductive step uses the $n=1$ case to increase the exponent.

Milliken's tree theorem for $n=1$. Let T be an infinite tree with no leaves. For all $k \geq 1$ and all $c: T \rightarrow k$ there exists $U \in \mathcal{S}_{\omega}(T)$ such that c is constant on U.

But MTT_{k}^{1} is not enough to carry out the induction in the proof of Milliken's tree theorem. Instead, the following stronger result is needed.

Halpern-Laüchli theorem. Fix $d \geq 1$, and let T_{0}, \ldots, T_{d-1} be infinite trees with no leaves. For all $k \geq 1$ and all $c: \bigcup_{n} \prod_{i<d} T_{i}(n) \rightarrow k$ there exist U_{0}, \ldots, U_{d-1} in $\mathcal{S}_{\omega}\left(T_{0}\right), \ldots, \mathcal{S}_{\omega}\left(T_{d-1}\right)$, respectively, with common level function, such that c is constant on $\bigcup_{n} \prod_{i<d} U_{i}(n)$.

Product version of Milliken's tree theorem

Given trees T_{0}, \ldots, T_{d-1}, let $\mathcal{S}_{\alpha}\left(T_{0}, \ldots, T_{d-1}\right)$ denote the collection of all tuples $\left(U_{0}, \ldots, U_{d-1}\right)$ such that $U_{i} \in \mathcal{S}_{\alpha}\left(T_{i}\right)$ and the U_{i} have a common level function.

Product version of Milliken's tree theorem. Fix $d \geq 1$, and let T_{0}, \ldots, T_{d-1} be infinite trees with no leaves. For all $k \geq 1$ and all $c: \mathcal{S}_{n}\left(T_{0}, \ldots, T_{d-1}\right) \rightarrow k$ there exists $\left(U_{0}, \ldots, U_{d-1}\right) \in \mathcal{S}_{\omega}\left(T_{0}, \ldots, T_{d-1}\right)$ such that c is constant on $\mathcal{S}_{n}\left(U_{0}, \ldots, U_{d-1}\right)$.

We let PMTT_{k}^{n} denote the product version of Milliken's tree theorem restricted to k-colorings of $\mathcal{S}_{n}\left(T_{0}, \ldots, T_{d-1}\right)$.

So MTT_{k}^{n} is just PMTT_{k}^{n} for $d=1$. Notice that the Halpern-Laüchli theorem is exactly PMTT_{k}^{1}.

Halpern-Laüchli theorem

Like $R T_{k}^{1}$ and $T T_{k}^{1}$, it is easy to see that $M T T_{k}^{1}$ is computably true, meaning that each instance computes a solution to itself.

While the Halpern-Laüchli theorem appears on its face as just a kind of parallelized/sequential version of $\mathrm{MTT}_{k^{\prime}}^{1}$ this is misleading. It encompasses much of the combinatorial core of the full Milliken's tree theorem.

A careful analysis of the proof reveals it to be basically an effective construction of a solution from a given instance of Halpern-Laüchli, with most of the combinatorial machinery being used merely to verify that the construction succeeds.

Thm (Anglès d'Auriac, Cholak, D., Monin, and Patey). The Halpern-Laüchli theorem is computably true (and uniformly so, in an arithmetical oracle).

Upper bounds on Milliken's tree theorem

Thm (Anglès d'Auriac, Cholak, D., Monin, and Patey). PMTT is arithmetically true: every instance has a solution arithmetically definable in itself.

Corollary. For all $n, k \geq 1, \mathrm{ACA}_{0} \vdash \mathrm{PMTT}_{k}^{n}$.

Since MTT_{k}^{n} implies TT_{k}^{n}, which implies $R T_{k}^{n}$, we also have:
Corollary. For all $n \geq 3$ and all $k \geq 2$, the following are equivalent over $R C A_{0}$:

1. ACA;
2. PMTT $_{\mathrm{k}}$;
3. $\mathrm{MTT}_{\mathrm{k}}^{\mathrm{n}}$;
4. TT_{k}^{n};
5. $R T_{k}^{n}$.

Cone avoidance and strong cone avoidance

Definition. Let P be a problem. Then P satisfies

- cone avoidance if for every A and every $C \not \mathbb{Z}_{T} A$, every A-computable instance of P has a solution Y such that $C \not \approx T A \oplus Y$.
- strong cone avoidance if for every A and every $C \not \leq T A$, every instance of P has a solution Y such that $C \not Z_{T} A \oplus Y$.

If P satisfies cone avoidance then there is a model of $R C A_{0}+P$ in which $A C A$ fails (indeed, a Turing ideal not containing \emptyset^{\prime}).

Being computably true does not necessarily imply strong cone avoidance.
Dzhafarov and Jockusch (2009). RT_{2}^{1} admits strong cone avoidnace.
Dzhafarov and Patey (2017). TT_{2}^{1} admits strong cone avoidance.

Lower bounds on Milliken's tree theorem for height 2

Thm (Anglès d'Auriac, Cholak, D., Monin, and Patey).

- The Halpern-Laüchli theorem satisfies strong cone avoidance.
- The product version of Milliken's theorem for $n=2$ satisfies cone avoidance.

Corollary. For all $k \geq 1, \mathrm{PMTT}_{k}^{2}$ does not imply ACA over RCA_{0}.
The proof is an effective forcing argument, following the scheme of Cholak, Jockusch, and Slaman (2001) of splitting into a stable part and a cohesive part.

Definition. Fix $d \geq 1$, and let T_{0}, \ldots, T_{d-1} be infinite trees with no leaves. A coloring $\mathrm{c}: \mathcal{S}_{2}\left(T_{0}, \ldots, T_{d-1}\right) \rightarrow k$ is stable if for each $\left(\sigma_{0}, \ldots, \sigma_{d-1}\right) \in \bigcup_{n} \prod_{i<d} T_{i}(n)$ there is a $N \in \mathbb{N}$ and $j<k$ such that $c\left(U_{0}, \ldots, U_{d-1}\right)=j$ for all $\left(U_{0}, \ldots, U_{d-1}\right) \in \mathcal{S}_{2}\left(T_{0}, \ldots, T_{d-1}\right)$ with $U_{i}(0)=\sigma_{i}$ and $U_{i}(1) \subseteq \bigcup_{n>N} T_{i}(n)$ for each $i<d$.

Schematic of proving cone avoidance

Stability. Strong cone avoidance of the $n=1$ case of a problem lifts to cone avoidance of the restriction to stable instances.

Strong cone avoidance of HL gives cone avoidance of stable PMTT_{k}^{2}.
Cohesiveness. Reducing from a general instance to a stable one on some domain satisfies cone avoidance

For every instance $\left(T_{0}, \ldots, T_{d-1}\right)$ and c of PMTT_{k}^{2} there is $\left(U_{0}, \ldots, U_{d-1}\right)$ in $\mathcal{S}_{\omega}\left(T_{0}, \ldots, T_{d-1}\right)$ not computing a given $C \not \mathbb{K}_{T} \emptyset$ on which c is stable.

In our case, this requires the construction of certain very fast growing functions that dominate the levels of all possible strong subtrees of height 2 with nice computational properties. This values are analogous to Ramsey numbers.

Putting it together. The two results combine to give cone avoidance of PMTT_{k}^{2}.

Applications

Milliken's tree theorem is false if, instead of coloring, say, $\mathcal{S}_{2}(T)$, we color $[T]^{2}$.
Example. Let $T=2^{<\omega}$ and set $c(\sigma, \tau)=i$ if $\tau \succeq \sigma i$, for $i<2$.
We cannot tell apart two pairs of comparable strings structurally. By enriching the structure we can find distinct embedding types, e.g., $\{\sigma, \sigma 0\}$ and $\{\sigma, \sigma 1\}$.

Definition. The big Ramsey degree of a structure \mathcal{A} in a structure \mathcal{B} is the least number ℓ, if it exists, such that for all $k \geq 1$ and all $c:\binom{\mathcal{B}}{\mathcal{A}} \rightarrow k$ there exists $\mathcal{B}^{\prime} \cong \mathcal{B}$ such that $\left|c^{\prime \prime}\binom{\mathcal{B}_{\mathcal{A}}}{)}\right| \leq \ell$.

See Zucker (2019) for a chracterization in terms of additional/enriched structure (big Ramsey structures).

Many "existence of big Ramsey degrees" results follow from MTT.

The Rado graph theorem

Let \mathcal{R} be the Rado graph (or random graph).

The Rado graph theorem. For every finite graph F there is an $\ell \in \mathbb{N}$ such that for every $k \geq 1$ and every $\mathrm{c}:\binom{\mathcal{R}}{\mathrm{F}} \rightarrow k$ there is a Random subgraph \mathcal{R}^{\prime} of \mathcal{R} such that $\left|c^{\prime \prime}\binom{\mathcal{R}}{F}\right| \leq \ell$.

For each finite graph F, let ℓ_{F} be the least ℓ as above. Computed by Sauer, Laflamme, Vuksanovic (2006); also for various F by Larson (2008).

Thm (Anglès d'Auriac, Cholak, D., Monin, and Patey).

- For every finite graph F of size 2, the Random graph theorem for F and $\ell=\ell_{F}$ satisfies cone avoidance.
- For every finite graph F of size 3 , there is a computable instance of the Random graph theorem for F and $\ell=\ell_{F}$ s.t. every solution computes \emptyset^{\prime}.

Devlin's theorem

Devlin's theorem. For every $n \geq 1$ there is an $\ell \in \mathbb{N}$ such that for every $k \geq 1$ and every $\mathrm{c}:[\mathbb{Q}]^{n} \rightarrow k$ there is a DLO $S \subseteq \mathbb{Q}$ such that $\left|c^{\prime \prime}[S]^{n}\right| \mid \leq \ell$.

Devlin (1980) computed for each n the least $\ell=\ell_{n}$ satisfying the conclusion of Devlin's theorem. These turn out to be the number of Joyce trees of size n.

The rationals admit a representation in terms of $2^{<\omega}$ that allows Devlin's theorem to be derived from Milliken's tree theorem. A pair of rationals thus specifies three strings: one for each rational, and their meet.

Thm (Anglès d'Auriac, Cholak, D., Monin, and Patey).

- Devlin's theorem for $n=1$ is computably true.
- Devlin's theorem for $n=2$ and $\ell=3$ implies $A C A_{0}$ over RCA $_{0}$.
- Devlin's theorem for $n=2$ and $\ell=4$ satisfies cone avoidance.

Thanks for your attention!

