
Some old and new uses of the tree labeling method
Damir D. Dzhafarov
Dept. of Mathematics, University of Connecticut
Fulbright Scholar, Charles University, Prague

November 24, 2021



Reverse math, in one slide

Reverse mathematics is a foundational program for calibrating the computable
and proof-theoretic content of mathematical principles.

Various subsystems of Z2 are used as benchmarks against which to test the
strength of theorems we are interested in: RCA0, WKL, ACA0, ...

RCA0 consists of the algebraic axioms about the natural numbers, plus
∆0

1-comprehension and Σ0
1-induction.

A model of RCA0 is a pair (N,S), where N is a (possibly nonstandard)
first-order structure, and S ⊆ P(N) is closed under ∆0

1-definability.

An ω-model is a model (N,S) with N = ω, which can thus be identified just
with S . If S |= RCA0 then S is a Turing ideal.



The computability-theoretic perspective

We are interested in statements of the form

∀X [Φ(X)→ ∃YΨ(X, Y)],

where Φ andΨ are some kind of properties of X and Y.

We think of this as a problem, “given X satisfying Φ, find Y satisfyingΨ”.

We call the X such that Φ(X) holds the instances of the problem,
and the Y such thatΨ(X, Y) holds the solutions to X for this problem.

Typically, we look at problems whose instances and solutions are subsets of N,
and where the properties Φ andΨ are arithmetical.

Basic question. Given an instance of a problem, how complex are its solutions?



Computable reducibility

Let P and Q be problems.

P is computably reducible to Q, written P ≤c Q, if

▶ every instance X of P computes an instance X̂ of Q,

▶ every Q-solution Ŷ to X̂, together with X, computes
▶ a P-solution Y to X.

So the following diagram commutes:

X
is solved by

��

computes // X̂
is solved by��

Y Ŷ
X-computes

oo

(Dzhafarov ’15; Hirschfeldt and Jockusch ’16).



Weihrauch reducibility

Let P and Q be problems.

P is Weihrauch reducible to Q, written P ≤W Q, if

▶ every instance X of P uniformly computes an instance X̂ of Q,

▶ every Q-solution Ŷ to X̂, together with X, uniformly computes
▶ a P-solution Y to X.

So the following diagram commutes:

X
is solved by

��

Φ // X̂
is solved by��

Y Ŷ
Ψ(X, ·)

oo

(Weihrauch ’92; Brattka; Gherardi and Marcone ’08; DDHMS ’16).



Strong forms

Let P and Q be problems.

P is strongly computably reducible to Q, written P ≤sc Q, if

▶ every instance X of P computes an instance X̂ of Q,

▶ every Q-solution Ŷ to X̂, (((((((hhhhhhhtogether with X , computes
▶ a P-solution Y to X.

P is strongly Weihrauch reducible to Q, written P ≤sW Q, if

▶ every instance X of P uniformly computes an instance X̂ of Q,

▶ every Q-solution Ŷ to X̂, (((((((hhhhhhhtogether with X , uniformly computes
▶ a P-solution Y to X.



Some examples

Ramsey’s theorem. For n, k ≥ 1, RTnk is the following problem:

▶ instances are all colorings c : [ω]n → k;

▶ solutions are all infinite sets H homogeneous for c (i.e., c constant on [H]n).

Theorem (Dorais, Dzhafarov, Hirst, Mileti, and Shafer).
If n ≥ 1 and k > j, then RTnk ≰sW RTnj .

Theorem (Hirschfeld and Jockusch; Brattka and Rakotoniania).
If n ≥ 1 and k > j, then RTnk ≰W RTnj .

Theorem (Dzhafarov). If k > j, then RT1k ≰sc RT1j .

Theorem (Patey). If n ≥ 2 and k > j, then RTnk ≰c RTnj .



Example: RT13 ≰sW RT12

Fix Turing functionals Φ andΨ.

c
is solved by ��

Φ // Φc

is solved by��
ΨH H

Ψ
oo

We must construct:

▶ a coloring c : ω → 3,

▶ an infinite homogeneous set H for Φc : ω → 2 such that either

▶ (↑) there are only finitely many x such thatΨH(x) ↓= 1, or

▶ (↓) there exists x < y such thatΨH(x) ↓= ΨH(y) ↓ 1 and c(x) ̸= c(y).



Example: RT13 ≰sW RT12

Theorem (Seetapun). One of the following is true:

▶ there is an infinite set I such that no F ⊆ I satisfies (∃x)[ΨF(x) ↓= 1],

▶ there are finite sets F0, . . . , Fn such thatΨFi(x) ↓= 1 for some x, and
▶ for every every d : ω → 2 there is an i such that Fi is homogeneous for d.

In the first case, let c be arbitrary. Take any homogeneous set H ⊆ I for Φc. (↑)

In the second, find all the Fi, and for each, fix x withΨH(x) ↓= 1:

F0 F1 F2 F3

c : · · ·
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Example: RT13 ≰sW RT12

Theorem (Seetapun). One of the following is true:
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Repeat for each of the other colors allowable for c. Obtain (↓).
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A more complicated problem: SRT22

A coloring c : [ω]2 → 2 is stable if for every x, limy c(x, y) exists.

▶ The value of limy c(x, y) is the limit color of x.

▶ The least n s.t. (∀z > n)[c(x, z) = limy c(x, y)] is the stabilization point of x.

Stable Ramsey’s theorem. SRT22 is the restriction of RT22 to stable colorings.

Combinatorially, solutions to SRT22 have global structure and local structure.

▶ The global structure ensures all elements have the same limit color.

▶ The local structure ensures all pairs of elements have the same color.

Typically: apply RT12 to get global structure, then thin to get local structure.

Seetapun’s combinatorial trick only works for global structure, not local.



Example: RT13 ≰sc SRT22

We must construct:

▶ a coloring c : ω → 3,

▶ for each Φ, if Φc : [ω]2 → 2 is stable, an infinite homogeneous set H
▶ such that for everyΨ, either

▶ (↑) there are only finitely many x such thatΨH(x) ↓= 1, or

▶ (↓) there exists x < y such thatΨH(x) ↓= ΨH(y) ↓ 1 and c(x) ̸= c(y).

In the (↓) case, we can no longer postpone defining c until we find
diagonalization opportunities.

This causes a serious tension: defining c to make some finite set F
homogeneous (local structure) may makeΨF homogeneous for c.



The tree labeling construction

Let T be the set of all increasing α ∈ ω<ω such that
for all finite F ⊆ ran(α ↾ |α| − 1), it is not the case thatΨF(x) ↓= 1 for some x.

Case 1. If T is not well-founded, let I be a path through T.
Now commit to building H inside ran(I), and obtain (↑).



The tree labeling construction

Let T be the set of all increasing α ∈ ω<ω such that
for all finite F ⊆ ran(α ↾ |α| − 1), it is not the case thatΨF(x) ↓= 1 for some x.

Case 2. Suppose T is well-founded.

We label each α ∈ T, either by some x ∈ ω or by the symbol∞.

▶ If α is a leaf, its label is the least x such thatΨF(x) = 1 for some F ⊆ ran(α).
▶ If α is not a leaf and infinitely many αi have the same label x ∈ ω,
▶ label α by the least such x.

▶ If α is not a leaf, and no x ∈ ω appears as the label of infinitelay many αi,
▶ label α by∞.



The tree labeling construction
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The tree labeling construction
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c : · · ·

Make progress towards (↓), as before.
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The tree labeling construction

· · ·

· · ·

· · ·
103101 6 10 7 10

10851∞∞ 15 17

∞

c : · · ·

Make c generic relative to the tree. Obtain (↓).



Old applications

Theorem (Dzhafarov). RT12 ≰sc SRT23.

Theorem (Dzhafarov, Patey, Solomon, Westrick). If k > j then RT1k ≰sc SRT2j .

Let P and Q be problems.

P is strongly omnisciently computably reducible to Q, written P ≤soc Q, if

▶ for every instance X of P there is an instance X̂ of Q,

▶ every Q-solution Ŷ to X̂ computes a P-solution Y to X.

Theorem (Dzhafarov, Patey, Solomon, Westrick). If k > j then RT1k ≰soc SRT2j .

Same argument, but now force over a ctbl model of ZFC, apply absoluteness.



New applications

Polarized Ramsey’s thoerem (Erdős and Rado).
Fix a coloring c : [ω]2 → k. A pair (H0,H1) of infinite sets is

▶ p-homogeneous if c is constant on H0 × H1 ∪ H1 × H0.

▶ increasing p-homogeneous if c is constant on H0 × H1.

Analogues of RT2k and SRT2k : denoted PT2k and SPT2k , and IPT2k and SIPT2k .

Theorem (Dzhafarov and Hirst). RCA0 ⊢ RT22 ↔ PT2k → IPT2k → SRT2k .

Theorem (Chong, Lempp, and Yang). RCA0 ⊢ SRT22 ↔ SPT2k ↔ SIPT2k .

Theorem (David Nichols 2019). SRT2k ≰sc SPT2k ≰sc SIPT2k .



New applications

Chain/antichain principle (Dilworth; Hirschfeldt and Jockusch).
CAC: Every infinite partial order has an infinite chain or antichain.

SCAC: Every partial order of type ω + ω∗ has an infinite chain or antichain.

A partial order≤P of ω is ordered if x ≤P y→ x ≤ y.

CACord and SCACord : restrictions of CAC and SCAC to ordered partial orders.

Theorem (Towsner). RCA0 ⊢ CAC↔ CACord and RCA0 ⊢ SCAC↔ SCACord.

Theorem (Noah Hughes 2021).
▶ CAC ≰c CACord.

▶ SCAC ≡c SCACord, but SCAC ≰W SCACord and SCAC ≰sc SCACord.



Thank you for your attention!


