Some old and new uses of the tree labeling method

Damir D. Dzhafarov Dept. of Mathematics, University of Connecticut Fulbright Scholar, Charles University, Prague

November 24, 2021

Reverse math, in one slide

Reverse mathematics is a foundational program for calibrating the computable and proof-theoretic content of mathematical principles.

Various subsystems of Z_2 are used as benchmarks against which to test the strength of theorems we are interested in: RCA₀, WKL, ACA₀, ...

 RCA_0 consists of the algebraic axioms about the natural numbers, plus Δ^0_1 -comprehension and Σ^0_1 -induction.

A model of RCA₀ is a pair (N, S), where N is a (possibly nonstandard) first-order structure, and $S \subseteq \mathcal{P}(N)$ is closed under Δ_1^0 -definability.

An ω -model is a model (N, S) with $N = \omega$, which can thus be identified just with S. If $S \models \text{RCA}_0$ then S is a Turing ideal.

The computability-theoretic perspective

We are interested in statements of the form

```
\forall X [\Phi(X) \rightarrow \exists Y \Psi(X, Y)],
```

where Φ and Ψ are some kind of properties of X and Y.

We think of this as a problem, "given X satisfying Φ , find Y satisfying Ψ ".

We call the X such that $\Phi(X)$ holds the instances of the problem, and the Y such that $\Psi(X, Y)$ holds the solutions to X for this problem.

Typically, we look at problems whose instances and solutions are subsets of $\mathbb N,$ and where the properties Φ and Ψ are arithmetical.

Basic question. Given an instance of a problem, how complex are its solutions?

Computable reducibility

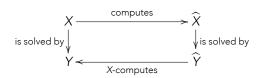
Let P and Q be problems.

P is computably reducible to Q, written $P \leq_c Q$, if

• every instance X of P computes an instance \widehat{X} of Q,

• every Q-solution \widehat{Y} to \widehat{X} , together with X, computes a P-solution Y to X.

So the following diagram commutes:



(Dzhafarov '15; Hirschfeldt and Jockusch '16).

Weihrauch reducibility

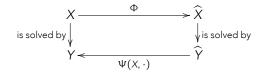
Let P and Q be problems.

P is Weihrauch reducible to Q, written $P \leq_W Q$, if

• every instance X of P uniformly computes an instance \widehat{X} of Q,

• every Q-solution \widehat{Y} to \widehat{X} , together with X, uniformly computes a P-solution Y to X.

So the following diagram commutes:



(Weihrauch '92; Brattka; Gherardi and Marcone '08; DDHMS '16).

Strong forms

Let P and Q be problems.

- P is strongly computably reducible to Q, written $P \leq_{sc} Q$, if
- every instance X of P computes an instance \widehat{X} of Q,
- every Q-solution \widehat{Y} to \widehat{X} , together with X, computes a P-solution Y to X.
- P is strongly Weihrauch reducible to Q, written P \leq_{sW} Q, if
- every instance X of P uniformly computes an instance \widehat{X} of Q,
- every Q-solution \widehat{Y} to \widehat{X} , together with X, uniformly computes a P-solution Y to X.

Some examples

Ramsey's theorem. For *n*, $k \ge 1$, RT_k^n is the following problem:

- instances are all colorings $c : [\omega]^n \to k$;
- ▶ solutions are all infinite sets H homogeneous for c (i.e., c constant on $[H]^n$).

Theorem (Dorais, Dzhafarov, Hirst, Mileti, and Shafer). If $n \ge 1$ and k > j, then $RT_k^n \nleq_{sW} RT_j^n$.

Theorem (Hirschfeld and Jockusch; Brattka and Rakotoniania).

If $n \ge 1$ and k > j, then $\operatorname{RT}_k^n \not\leq_W \operatorname{RT}_j^n$.

Theorem (Dzhafarov). If k > j, then $RT_k^1 \not\leq_{sc} RT_j^1$.

Theorem (Patey). If $n \ge 2$ and k > j, then $RT_k^n \nleq_c RT_i^n$.

Fix Turing functionals Φ and Ψ .

We must construct:

- a coloring c : $\omega \rightarrow 3$,
- an infinite homogeneous set H for Φ^c : ω → 2 such that either
 (↑) there are only finitely many x such that Ψ^H(x) ↓= 1, or
 (↓) there exists x < y such that Ψ^H(x) ↓= Ψ^H(y) ↓ 1 and c(x) ≠ c(y).

Theorem (Seetapun). One of the following is true:

- there is an infinite set *I* such that no $F \subseteq I$ satisfies $(\exists x)[\Psi^F(x) \downarrow = 1]$,
- ▶ there are finite sets F_0, \ldots, F_n such that $\Psi^{F_i}(x) \downarrow = 1$ for some x, and for every every $d : \omega \to 2$ there is an i such that F_i is homogeneous for d.

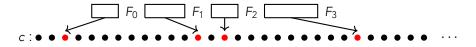
Theorem (Seetapun). One of the following is true:

- there is an infinite set *I* such that no $F \subseteq I$ satisfies $(\exists x)[\Psi^F(x) \downarrow = 1]$,
- ▶ there are finite sets F_0, \ldots, F_n such that $\Psi^{F_i}(x) \downarrow = 1$ for some x, and for every every $d : \omega \to 2$ there is an i such that F_i is homogeneous for d.



Theorem (Seetapun). One of the following is true:

- there is an infinite set *I* such that no $F \subseteq I$ satisfies $(\exists x)[\Psi^F(x) \downarrow = 1]$,
- ▶ there are finite sets F_0, \ldots, F_n such that $\Psi^{F_i}(x) \downarrow = 1$ for some x, and for every every $d : \omega \to 2$ there is an i such that F_i is homogeneous for d.



Theorem (Seetapun). One of the following is true:

- ▶ there is an infinite set *I* such that for all $F \subseteq I$, $\Psi^F(x) \downarrow = 1$ for all x,
- ▶ there are finite sets F_0, \ldots, F_n such that $\Psi^{F_i}(x) \downarrow = 1$ for some x, and for every every $d : \omega \to 2$ there is an i such that F_i is homogeneous for d.

Theorem (Seetapun). One of the following is true:

- ▶ there is an infinite set *I* such that for all $F \subseteq I$, $\Psi^F(x) \downarrow = 1$ for all *x*,
- ▶ there are finite sets F_0, \ldots, F_n such that $\Psi^{F_i}(x) \downarrow = 1$ for some x, and for every every $d : \omega \to 2$ there is an i such that F_i is homogeneous for d.

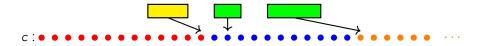
In the first case, let c be arbitrary. Take any homogeneous set $H \subseteq I$ for Φ^c . (\uparrow) In the second, find all the F_i , and for each, fix x with $\Psi^H(x) \downarrow = 1$:

Repeat for each of the other colors allowable for c. Obtain (\downarrow) .

Theorem (Seetapun). One of the following is true:

- ▶ there is an infinite set *I* such that for all $F \subseteq I$, $\Psi^F(x) \downarrow = 1$ for all x,
- ▶ there are finite sets F_0, \ldots, F_n such that $\Psi^{F_i}(x) \downarrow = 1$ for some x, and for every every $d : \omega \to 2$ there is an i such that F_i is homogeneous for d.

In the first case, let c be arbitrary. Take any homogeneous set $H \subseteq I$ for Φ^c . (\uparrow) In the second, find all the F_i , and for each, fix x with $\Psi^H(x) \downarrow = 1$:



Repeat for each of the other colors allowable for c. Obtain (\downarrow) .

A more complicated problem: SRT₂²

A coloring $c : [\omega]^2 \to 2$ is stable if for every x, $\lim_y c(x, y)$ exists.

- The value of $\lim_{y} c(x, y)$ is the limit color of x.
- The least *n* s.t. $(\forall z > n)[c(x, z) = \lim_{y} c(x, y)]$ is the stabilization point of *x*.

Stable Ramsey's theorem. SRT_2^2 is the restriction of RT_2^2 to stable colorings.

Combinatorially, solutions to SRT_2^2 have global structure and local structure.

- ▶ The global structure ensures all elements have the same limit color.
- ► The local structure ensures all pairs of elements have the same color.

Typically: apply RT_2^1 to get global structure, then thin to get local structure.

Seetapun's combinatorial trick only works for global structure, not local.

We must construct:

- a coloring c : $\omega \rightarrow 3$,
- ► for each Φ , if $\Phi^c : [\omega]^2 \to 2$ is stable, an infinite homogeneous set H such that for every Ψ , either

(\uparrow) there are only finitely many x such that $\Psi^{H}(x) \downarrow = 1$, or

(\downarrow) there exists x < y such that $\Psi^{H}(x) \downarrow = \Psi^{H}(y) \downarrow 1$ and $c(x) \neq c(y)$.

In the (\downarrow) case, we can no longer postpone defining c until we find diagonalization opportunities.

This causes a serious tension: defining c to make some finite set F homogeneous (local structure) may make Ψ^F homogeneous for c.

Let *T* be the set of all increasing $\alpha \in \omega^{<\omega}$ such that for all finite $F \subseteq \operatorname{ran}(\alpha \upharpoonright |\alpha| - 1)$, it is not the case that $\Psi^F(x) \downarrow = 1$ for some *x*.

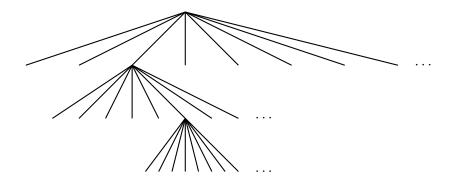
Case 1. If *T* is not well-founded, let *I* be a path through *T*. Now commit to building *H* inside ran(I), and obtain ([†]).

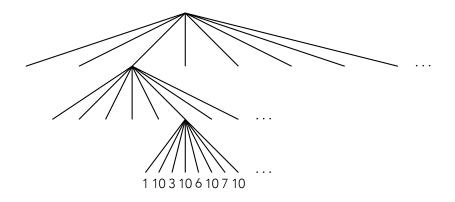
Let *T* be the set of all increasing $\alpha \in \omega^{<\omega}$ such that for all finite $F \subseteq \operatorname{ran}(\alpha \upharpoonright |\alpha| - 1)$, it is not the case that $\Psi^F(x) \downarrow = 1$ for some *x*.

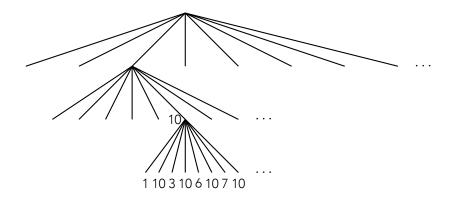
Case 2. Suppose T is well-founded.

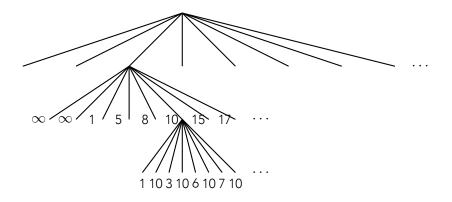
We label each $\alpha \in T$, either by some $x \in \omega$ or by the symbol ∞ .

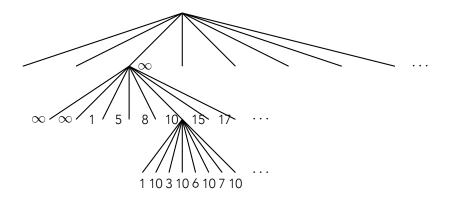
- If α is a leaf, its label is the least x such that $\Psi^F(x) = 1$ for some $F \subseteq \operatorname{ran}(\alpha)$.
- If α is not a leaf and infinitely many αi have the same label $x \in \omega$, label α by the least such x.
- If α is not a leaf, and no $x \in \omega$ appears as the label of infinitelay many αi , label α by ∞ .

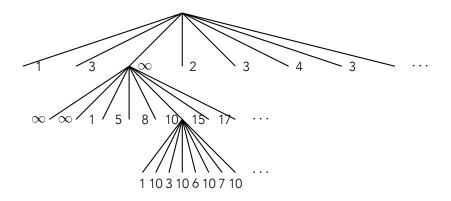


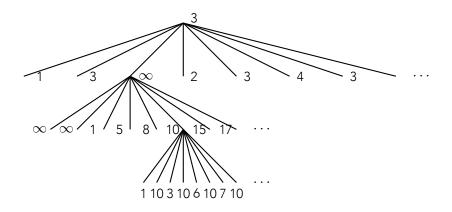


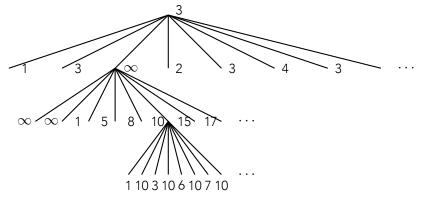






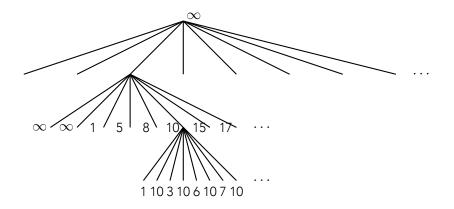


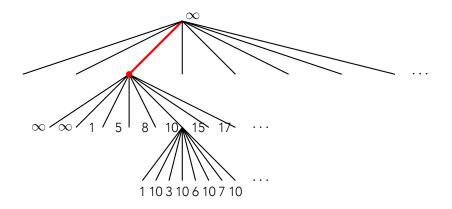


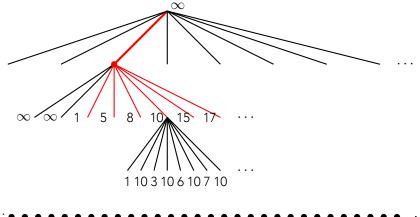




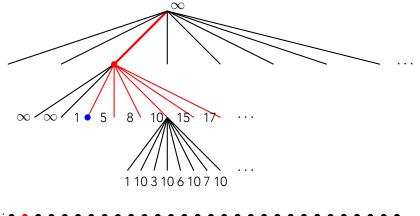
Make progress towards (\downarrow) , as before.



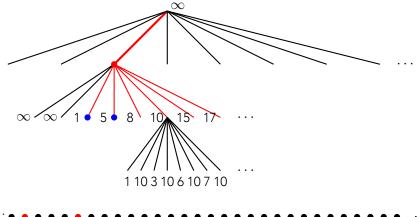




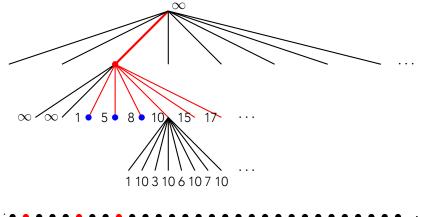
• • •



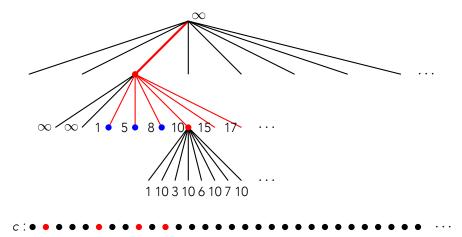
...

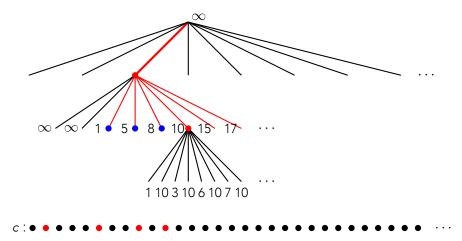


• • •

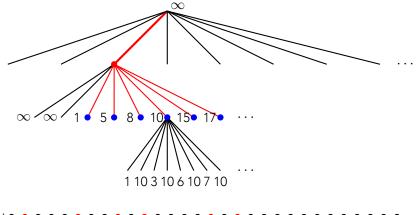


• • •

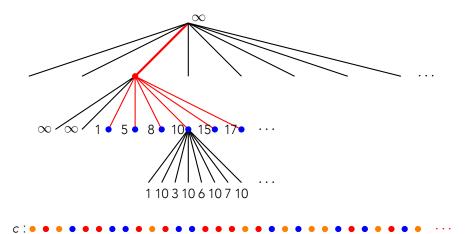




Make progress towards (\downarrow) .



• • •



Make *c* generic relative to the tree. Obtain (\downarrow) .

Old applications

Theorem (Dzhafarov). $RT_2^1 \nleq_{sc} SRT_3^2$.

Theorem (Dzhafarov, Patey, Solomon, Westrick). If k > j then $RT_k^1 \not\leq_{sc} SRT_i^2$.

Let P and Q be problems.

P is strongly omnisciently computably reducible to Q, written P \leq_{soc} Q, if

• for every instance X of P there is an instance \widehat{X} of Q,

• every Q-solution \widehat{Y} to \widehat{X} computes a P-solution Y to X.

Theorem (Dzhafarov, Patey, Solomon, Westrick). If k > j then $RT_k^1 \not\leq_{soc} SRT_j^2$.

Same argument, but now force over a ctbl model of ZFC, apply absoluteness.

New applications

Polarized Ramsey's thoerem (Erdős and Rado).

Fix a coloring $c : [\omega]^2 \to k$. A pair (H_0, H_1) of infinite sets is

- ▶ p-homogeneous if c is constant on $H_0 \times H_1 \cup H_1 \times H_0$.
- increasing *p*-homogeneous if *c* is constant on $H_0 \times H_1$.

Analogues of RT_k^2 and SRT_k^2 : denoted PT_k^2 and SPT_k^2 , and IPT_k^2 and $SIPT_k^2$. Theorem (Dzhafarov and Hirst). $RCA_0 \vdash RT_2^2 \leftrightarrow PT_k^2 \rightarrow IPT_k^2 \rightarrow SRT_k^2$. Theorem (Chong, Lempp, and Yang). $RCA_0 \vdash SRT_2^2 \leftrightarrow SPT_k^2 \leftrightarrow SIPT_k^2$. Theorem (David Nichols 2019). $SRT_k^2 \not\leq_{sc} SPT_k^2 \not\leq_{sc} SIPT_k^2$.

New applications

Chain/antichain principle (Dilworth; Hirschfeldt and Jockusch).

CAC: Every infinite partial order has an infinite chain or antichain.

SCAC: Every partial order of type $\omega + \omega^*$ has an infinite chain or antichain.

A partial order \leq_P of ω is ordered if $x \leq_P y \rightarrow x \leq y$.

 $\label{eq:CACord} \mbox{and SCAC}^{\rm ord} \mbox{ : restrictions of CAC and SCAC to ordered partial orders.}$ Theorem (Towsner). $\mbox{RCA}_0 \vdash \mbox{CAC} \leftrightarrow \mbox{CAC}^{\rm ord} \mbox{ and } \mbox{RCA}_0 \vdash \mbox{SCAC} \leftrightarrow \mbox{SCAC}^{\rm ord}.$

Theorem (Noah Hughes 2021).

- ► CAC \leq_c CAC^{ord}.
- ▶ SCAC \equiv_{c} SCAC^{ord}, but SCAC $\not\leq_{W}$ SCAC^{ord} and SCAC $\not\leq_{sc}$ SCAC^{ord}.

Thank you for your attention!